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Abstract 
Dispersions of copper phthalocyanine (CuPc) pigments are 

commonly used in digital printing. Their colloidal stability is 

essential for fulfilling desirable shelf life and achieving good 

printing performance.  In order to understand the role of 

electrostatic and van der Waals forces in their stability, a 

combined computational and experimental study has been 

performed to investigate the stability of the CuPc aqueous 

dispersions. 

The Hamaker constant was calculated with a novel 

combination of an ab initio and an empirical methodology (J. 

Chem. Theory Comput., 2010, 6 (2), pp 491–498) to address the 

van der Waals attractions between the pigment particles. The 

calculated Hamaker constant was then employed in the DLVO 

(Derjaguin-Landau-Verwey-Overbeek)  equation for dispersion 

stability simulation. The predictions allow comparisons with 

experimental colloidal stability study of CuPc aqueous dispersions  

(Langmuir, 2010, 26 (10), pp 6995–7006)). The effect of a 

nonionic surfactant on the dispersion stability of CuPc particles 

was taken into consideration. The experimental dispersion 

stability ratio (W) was determined from dynamic light scattering 

(DLS) data and based on the Rayleigh-Debye-Gans (RDG) 

scattering theory. The adsorption isotherms show that the 

adsorption density increases with increasing equilibrium 

concentration of surfactant up to the cmc, and then reaches a 

plateau. Desorption tests were conducted to determine the 

reversibility or irreversibility of adsorption. Preliminary results 

suggest that a portion of the surfactant adsorbs irreversibly. The 

comparisons reveal that electrostatic forces play a significant role 

in the dispersion stabilization. 

Introduction  
  The dispersion stability of pigment particles plays an 

important role in the printing quality of different inks. The degree 

of dispersion stability not only affects the optical properties, but 

also influences the performance and the maintenance of the print 

head. In order to maintain the desirable dispersion stability for a 

considerably long time (months), there must be some strong 

repulsive interactions among the particles. Such repulsive 

interactions must be adequate to counteract and exceed the 

attractive interactions. There are several “mechanisms,”: (i) 

electrostatic, “double-layer,” interactions (DLVO); (ii) steric 

interactions; (iii) “hydration forces;” and perhaps others.  For the 

past 60 years the Derjaguin, Landau, Verwey, and Overbeek 

(DLVO) theory has been used as a basis for explaining or 

interpreting, at least in part, the stability of colloidal dispersions of 

charged particles in water [1]. In the context of this theory, the van 

der Waals attractive “long-range” forces cause particles to 

agglomerate, and the electrostatic double layer generates long-

range repulsive forces which tend to keep particles from 

agglomerating.  

A goal of our work is to propose a new empirical equation to 

calculate the Hamaker constants of materials based on the time-

dependent density functional theory (TDDFT). The second goal is 

to test the applicability of the DLVO theory combined with the 

Fuchs-Smoluchowski theory in predicting the stability of copper 

phthalocyanine (CuPc)  pigment dispersions. Furthermore, the 

effect of Triton X-100 surfactants on the colloidal dispersion 

stability has been investigated. 

Computational and Experimental Methods  

Hamaker Constants Calculation 
We have benchmarked a computational approach based on 

time-dependent density functional theory (TDDFT) for predictions 

of the London dispersion coefficients (C11) [2]. The validated 

TDDFT scheme is then employed to calculate the dispersion 

coefficients for copper phthalocyanine (CuPc), and for mono-

sulphonated CuPc (CuPc-SO3H). The molecular structures of 

CuPc and CuPc-SO3H are shown in Figure 1. 

 

   
Figure 1. Molecular structures of CuPc and CuPc-SO3H. 

A modified Hamaker equation has been used to calculate the 

non-retarded Hamaker constants from dispersion coefficient C12, 

A12 = aπ2C12ρ1ρ2 (1) 

where a=0.6815 is an empirical parameter developed in a previous 

paper[2] to account for the shortcomings of assumptions in the 

original Hamaker equation. 

Materials  
CuPc-U (unsulfonated and hydrophobic) particles were 

obtained from BASF as dry solid powder. CuPc-S (surface 
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sulfonated and hydrophilic) particles were obtained from Cabot 

Corp. (MA, USA) as a 10 wt% stable dispersion in water, and were 

used as received. Water was first distilled and then passed through 

a Millipore four-stage cartridge system. 

Triton X-100 was purchased from Sigma-Aldrich (MO, USA) 

and was used without further purification. HPLC-grade 

acetonitrile, ammonium acetate, and sodium nitrate were 

purchased from Sigma-Aldrich (MO, USA). 

Measurements  
The hydrodynamic diameter of CuPc particles was measured 

with a Brookhaven ZetaPALS Dynamic Light Scattering 

instrument, whereas XPS spectra were measured with a Kratos 

Axis Ultra electro spectrometer using a monochromatic Al Kα 

source operated at 75 W, using a hybrid lens system with a 

magnetic lens, and a charge neutralizer. 

HRTEM images of CuPc-S particles and CuPc-U particles 

stabilized with Triton X-100 were obtained with a JEOL 3100 

TEM microscope.  

Nitrogen adsorption measurements for obtaining the BET 

specific surface areas of CuPc-U and CuPc-S particles were 

performed at 77 K on a Micromeritics ASAP 2000 volumetric 

adsorption analyzer.  

The HPLC-MS consists of an HP 1100 manual injector with a 

20 µl sample loop, an HP 1100 LC pump, and an LC-MSD HP 

1100 quadrupole mass-selective detector equipped with 

atmospheric pressure electrospray ionization (ESI) interface. In the 

HPLC method, a UV detector was used for analysis. It consists of 

an HP 1100 autosampler with each injection volume set to 25 µl, 

an HP 1100 LC pump and an HP 1100 M diode array UV-visible 

detector.  

The adsorbed densities at 25 ºC were determined by mixing 

ca. 0.1 g of CuPc-U or CuPc-S in 10 g of Triton X-100 aqueous 

solutions of various surfactant concentrations. The particles were 

dispersed using a Branson bath sonicator for 30 min. After 

adsorption, dispersions were centrifuged at 18K rpm for 30 min 

with a Beckman Coulter Microcentrifuge. The final steady state 

concentrations of Triton X-100 in the supernatants were analyzed 

with the HPLC-UV method for obtaining the overall amounts of 

surfactant on the particles surfaces.  

For testing the adsorption reversibility or irreversibility, 

desorption experiments were done at 25 ºC by diluting CuPc 

dispersions with various amounts of DI water after the adsorption 

experiments had been completed. Dispersions with the final steady 

state or “equilibrium” concentration of Triton X-100 around the 

cmc were chosen for starting desorption experiments. 
The stability of the dispersions was evaluated based on the 

time-dependent average hydrodynamic diameter dh (t) as measured 

from the DLS data. See reference [3] for further details. 

Results and Discussion   

Hamaker Constants from TDDFT 
Table 1 presents the benchmarking results of our new model 

(Eq 1) for the calculation of Hamaker constant.  

As shown in Table 2, the new model gives much better 

accuracy than the original Hamaker Equation (a =1). The mean 

absolute percentage error of the new model is about 14 times 

smaller than the original Hamaker theory. 

Table 1. Comparison of predicted A11 (×10-20 J) values to the 

“best estimates” of Hough and White 

A11 A11 A11 
Material 

best estimate 
b
 a =1.0 a =0.6815 

H2O 3.70 5.38 3.66 

Pentane 3.75 5.16 3.52 

Decane 4.72 6.89 4.70 

Hexadecane 5.23 7.67 5.23 

Polystyrene 6.58 10.11 6.89 

PMMA 7.11 11.32 7.71 

MAPE 
c
  48.08 3.48 

a All dispersion coefficients are calculated with the SPZ functional and the 

HGH  pseudopotentials using a grid spacing of 0.25 Å. 
b Taken from Hough and White.[4]   
c MAPE is the mean absolute percentage error for Hamaker constants. 

 

The calculated Hamaker constants for CuPc are shown in 

Table 2. 

 

Table 2.  Calculated Values of A11 and A121 for CuPc using a = 

0.6815 in Equation 1 

particle ρ1(g/cm3) 
A11×10-

20(J) a 

A121×10-

20(J) 
Comment 

α-CuPc 1.63 14.73 3.66 ideal density 

β-CuPc 1.62 14.66 3.63 ideal density 

β-CuPc 1.56 13.52 3.07 measured density 

 

The calculated Hamaker constants for CuPc have been 

employed in our DLVO simulation. 

TEM Images and Particle Shapes 
The TEM images show discrete microcrystalline flat-edged 

particles, some of which probably aggregated during the sample 

preparation (Figure 2).  

 

     
Figure 2. TEM images of CuPc pigment particles dried from a 50 ppm 

dispersion in water, at magnification of (a) 28,500× and (b) 52,000×. 

Individual particles have globular and nonspherical 

morphology. Their shape resembles that of short right cylinders or 

parallelepipeds. For this reason, and for mathematical 

convenience, the particle shape was modeled below either as 

spheres or as parallel face-to-face cubes.  

(a) (b) 
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Dispersion Stability 
In a previous paper [3], we have developed a method to 

estimate the stability ratio W. Table 3 presents comparisons of 

experimental W-Values with those predicted by the DLVO Theory. 

 

Table 3.  W-values calculated from the experiment and W-values 

predicted from the DLVO theory for two models. 

c(NaNO3), 

mM 
Wexp 

DLVO Model 

for Spheres 

DLVO Model 

for Cubes 

0 1.4×108 5.2×1030 3.1×102 

1 >3.2×106  1.4×1014 1.9×1065 

> 2.5×106 6.5×105 5.0×10106 

> 3.8×107 2.1×102 8.3×1061 10 

 7.9×108 7.8×105 1.5×10109 

> 2.1×106 1a 1a 
100 

2.6×107 1a 1a 

1.0×103 1a 1a 
500 

9.0×103 1a 1a 
a When no positive potential maximum was predicted, fast 

coagulation limit (W=1) is assumed. 

 

The initial stability ratios W were determined quantitatively 

from DLS data for the RDG scattering regime. As the NaNO3 

concentration increased from 1 to 500 mM, the W-values 

decreased from 3.2×106 to 1.0×103. This indicates that the stability 

of CuPc dispersion depends on the electrolyte concentration and 

that electrostatic effects play an important role. 

Two new models of the DLVO theory, for spheres and for 

parallel face-to-face cubes, at constant potential, have been 

reformulated in dimensionless form. The model for cubes, for the 

systems tested at 1 and 10 mM NaNO3 concentrations, predicted 

higher stability than the model for spheres. At c =0 mM, the model 

for spheres overestimates the stability, while the model for cubes 

highly underestimates the stability.  By contrast, at c=1 mM, both 

models overestimates the stability. At c=10 mM, the model for 

spheres underestimates the stability whereas the model for cubes 

overestimates the stability. This suggests some significant shape 

effects on the stability. At c=100 and 500 mM, both models 

underpredicted the stability substantially.  

Shape and orientation effects and the effects of other short-

range forces need to be investigated further, by molecular-scale 

theories or simulations. Especially at higher ionic strengths, some 

additional short-range force barrier may play a major role in the 

dispersion stability. 

Effect of Triton X-100 
The effect of a nonionic surfactant, Triton X-100, on the 

dispersion stability of the CuPc-U and CuPc-S particles in water 

and in NaNO3 solutions was investigated at 25 ºC. The adsorption 

of Triton X-100 was determined with HPLC, and the adsorption 

isotherms are shown in Figure 3 [5]. 

The adsorption isotherms of Triton X-100 on the CuPc-U and 

CuPc-S indicate that the adsorption density increases with 

increasing concentration of surfactant and then reaches a plateau 

above the cmc. Desorption tests show that some surfactant 

molecules adsorb irreversibly, suggesting the presence of some 

strong and some weak adsorption sites on the CuPc particle 

surfaces. The maximum molar adsorption density   is higher for the 

CuPc-U than that for the CuPc-S, implying that the surfactant does 

not adsorb on the sulfonate groups. The minimum areas per 

molecule   for the CuPc-U and CuPc-S particles are estimated from 

BET specific surface areas to be about 0.65 nm2 and 1.21 nm2 

respectively. The areas per molecule above the cmc indicate coil or 

“mushroom” conformations of the EO chains. 
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Figure 3. Adsorption isotherms of Triton X-100 on the CuPc-U and CuPc-

S particles in water at 25 ºC. The lines are included to guide the eye. 

CuPc-U particles are quite unstable and hydrophobic with no 

Triton X-100 added (Figure 4). At a surface coverage θ above 

0.72, they become quite stable, apparently because of a steric 

mechanism. Adding NaNO3 has no significant contribution to the 

dispersion stability.  
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 θ =      0                 0.23               0.56               0.85                0.96 

Figure 4. Photographs of 1 wt% CuPc-U dispersions with various surfactant 

fractional surface coverage θ. 

Our results indicate that current theories and intuition may be 

inadequate to predict what conditions are needed for effective 

colloidal stabilization of CuPc particles in water. The problem 

becomes more challenging for nonspherical, flat-edged, and 

elongated particles, such as the ones studied here. The methods 

used here for determining surface adsorption densities and 

irreversibility may be used to screen other surfactants or 

dispersants.  
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The zeta potential of particles is affected by chemisorbed or 

attached ionic groups, but also by dissolved electrolyte, as is well 

known, but also by adsorbed surfactant [6]. The inferred change on 

the particles is affected also by preferential adsorption of negative 

ions, OH− in water or NO3
− in aqueous NaNO3 as in this study. 

The zeta potential is found not to be a good predictor of the 

electrostatic stabilization. Still, experiments such as those 

discussed here need to be done to determine the relative stability 

ratios, the adsorbed surface densities of the surfactant, and its 

effect on colloidal stabilization because the interaction of the 

particle surface with the solutes and solvent are complex. 

Conclusion   
We have employed computational and experimental methods 

to investigate the stability of the CuPC pigment dispersion. A 

generic TDDFT method for the calculation of Hamaker constants 

have been developed. The calculated Hamaker constants have been 

employed in the DLVO equation to simulate the dispersion 

stability of CuPu aqueous suspension. Our study shows that 

electrostatic effects play a major role in the stability of CuPc-based 

dispersions. The calculated particle charge z per CuPc particle 

based on the zeta potential data and the area of the particles 

(assumed to be cubical) suggests that there is preferential 

adsorption of NO3- ions on the uncharged CuPc surface, and the 

surface charge increases with increasing electrolyte concentration. 

Furthermore, two new models of the DLVO theory, for spheres 

and for parallel face-to-face cubes, were reformulated in 

dimensionless form, and the DLVO results have been compared to 

experiments. The comparison shows that, in water, the DLVO 

model for spheres overestimated the stability, while the model for 

cubes underestimated the stability.  

The effect of Triton X-100 on the colloidal dispersion 

stability of CuPc-U and CuPc-S particles in aqueous solutions has 

been investigated at 25 ºC.  The adsorption densities of Triton X-

100 on both the CuPc-U and CuPc-S increase with increasing 

concentration of surfactant up to the critical micelle concentration 

(cmc), and then reach a plateau. 

 The stability ratios for the CuPc-S in solutions with NaNO3 

are higher than those for CuPc-U, and decrease with increasing 

concentration of NaNO3, indicating that the stabilization is 

affected by the screening of electrostatic repulsive forces. Our 

results show that the zeta potential is not a good indicator of the 

electrostatic stabilization, pointing to the need for new and 

improved theory. 
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