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Abstract 

In a single-layer organic photoconductor, depletion charging 
and surface charge injection are important issues in the 
electrophotographic process. During the initial stages of the 
charging process, a finite amount of free and shallow trap 
generated charges are swept out of the bulk of the photoconductive 
layer. Also, surface charges from corona ions can be injected into 
the layer due to the adsorption of corona generated chemicals on 
the free surface. Such depletion charging and surface charge 
injection reduce the charge acceptance. In single-layer high 
gamma photoreceptors, the charge acceptance is not reduced in 
any degree in spite of abundant depletable carriers and excess 
surface charge injection. The photoinduced and dark discharge 
characteristics of such high gamma photoreceptors are found to be 
well described by a mathematical structural trap model which 
takes into account both carrier depletion and surface charge 
injection. 

Introduction  
An electrophotographic single-layer high gamma organic 

photoreceptor typically consists of x-type metal-free 
phthalocyanine pigment dispersed in an insulating binder polymer. 
The photoreceptor receives a positive surface charge and is 
exposed to light absorbed by pigment. On exposure the surface 
potential decreases rapidly only after a threshold exposure. Weigl 
has referred to this as the induction effect [1]. We have clarified 
that the induction effect is due to “an intermediate trapping by 
structural units and kinetically induced process” [2]. We have 
found that structural traps give rise to the induction effect and this 
characteristic enables the fabrication of high gamma 
photoreceptors with good charge acceptance, low dark decay rate, 
high gamma, and fast photoresponse. In a single-layer organic 
photoreceptor, depletion charging [3] and surface charge injection 
[4] are important issues in the electrophotographic process. It has 
been pointed out that such depletion charging and surface charge 
injection reduce the charge acceptance. For the high gamma 
photoreceptors described in this paper we show that the charge 
acceptance is not reduced to any degree in spite of abundant 
depletable carriers and excess surface charge injection and we 
describe a mechanism to account for these observations. However, 
the characteristics of the induction exposure do depend on surface 
charge injection. An overcoat is effective in protecting the high 
gamma photoreceptor surface from carrier injection due to corona 
generated chemicals from corona chargers.   

Experimental  
A high gamma photoreceptor with x-type metal-free 

phthalocyanine pigment (15.5 vol%, the average diameter: 0.7 μm) 

dispersed in a polyester binder  (Digital Photoreceptor HGPC) 
was invesitgated.  

The charge acceptance, photoinduced and dark discharege 
characteristics were measured by conventional methods. The 
photoconductive durm was sequentially corona charged, exposed 
to monochromaitc light (710 nm), and then erased (tungsten lamp 
λ > 640 nm, 150 μJ/cm2). The surface potential was measured 0.3 
sec after the exposure. With each drum rotation the supply voltage 
to the light source was changed stepwise to obtain the 
photoinduced discharge characteristic of the photoreceptor. The 
diameter of the photoconductive drum was 80 mm and the 
circumferential velocity 55.85 mm/s giving an exposure time of 
3.6 ms. The dark discharge was measured after corona charging by 
turning off the exposing light and stopping the drum roation.  

Results 
The surface potential was measured as a funtion the corona 

charge delivered for photoreceptor thicknesses of  10 μm, 18 μm, 
and  34 μm. The surface potential divided by the layer thickness 
are plotted as a function of the surface charge density in Figure 1. 
The solid curve was obtained by calculation from Equation (1), 
where the relative permittivity is taken to be 4.3. The corona 
charged surface potential Vc is defined as follows: 

 
e Qs L 

          Vc  =  ————                                                              (1) 
ε ε0 
 

where e is the electronic unit of charge, L is the photoreceptor 
thickness, ε the relative permittivity, ε0 the permittivity of vacuum, 
and Qs the surface charge density in charges/cm2.  

The dark discharge characteristics for initial surface potentials 
of 400 V, 500 V, 700 V, and 900 V are shown in Figure 3. The 
photoinduced discharege characteristics for initial surface 
potentials of are shown in Figure 4.  

Discussion  
Phthalocyanine pigments dispersed in the high gamma 

photoreceptor form chains at pigment concentrations higher than 
about 20 wt% [5]. Figure 2 (a) gives a schematic view of formation 
of the pigment chain beneath the free surface. Under such 
circumstances, the contact point of a particle with an adjacent 
particle can be offset from base of the spherical bodies in the 
direction of the electric field. In this case free carriers are 
considered to be trapped within the saucer-shaped-space 
surrounded by insulating binder polymer. This is referred to as a 
structural trap. We call the depth a structural depth.  
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Figure 1. Surface potential V0/thickness L vs. surface charge density e Qs for  
Digital Photoreceptor HGPC of various thicknesses.  

Fig. 2(b) shows our structural trap model for theoretical 
calculations, where ds is the structural trap depth and structural 
units are assumed to be distributed evenly in a photoconductive 
layer. We call one restricted carrier transport space with one 
structural trap a structural unit. The restricted carrier transport 
space corresponds to the bulk of the photoconductive particle and 
the upper end of ds to the contact point to the next particle.  

Borsenberger and Weiss have described a model due to Pai 
[6] to explain the charging characteristics of amorphous silicon 
photoreceptors. In this model it is assumed that a positively 
charged single-layer photoreceptor contains a uniform distribution 
of hole trapping centers (depletable center) that can be thermally 
ionized. The depletable centers are electrically neutral when 
occupied and negatively charged when ionized.  

Fig. 2(a) shows depletion phenomenon for high gamma 
photoreceptors. Under the electric field due to corona charging, 
depletable holes are trapped in the structural traps. Negative 
depletable centers are distributed uniformly in all regions of the 
photoconductive particle. As for Fig. 2(a), one negative charge in a 
center of the particle represents uniformly distributed negative 
space charges.  In Fig. 2(b), depletable holes are trapped in the 
structural traps and electron space charge is formed in all regions 
of the structural unit. As for Figure 2(b), one negative charge in a 
center of the unit represents uniformly distributed negative space 
charges.   

Structural Traps and Surface Charge Injection  
Weiss and Abkowitz have described that single-layer 

photoreceptors will be very sensitive to exposure to corona gases 
because the carrier generation material is exposued at the free 
surface [4]. All of the pigments and complexes used as carrier 
generation material will react with ozone, NOx, and HNOx, and the 
electrohotographic performance will be severely impacted [7]. 

Seino and Ebisu reported that exposure of a sigle-layer organic 
photoreceptor with CuPc to NOx causes a rapid decrease in the 
charge acceptance [8]. Injection charges from the free surface are 
trapped by the first structural trap as shown in Fig. 2(a) and by the 
first structural trap shown in Fig. 2(b). 
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Figure 2. (a) A schematic view for structural traps produced by random 
contact between photoconductive particles dispersed in an insulating binder 
polymer. (b) A structural trap model with structural depth ds for a high gamma 
photoreceptor.  

Charge Acceptance  
The observable initial surface potential V0 derived from the 

mathematical structural trap model is given by  
 

e L (Qs － Qij / NL － Nb L/ 2NL )      
V0 = ———————————————   ≈ Vc           (2) 

                               ε ε0 
 

where Qij  is the injection charge density (charges/cm2), Nb is the 
depletable center density (centers/cm3), and NL is the number of 
structural units in the photoconductive layer (> 10 units). In single-
layer high gamma photoreceptors, the charge acceptance is not 
reduced in any degree in spite of depletable carriers and surface 
charge injection. 

Photoinduced and Dark Discharge  
With Fig. 2(b) as the initial condition, the thermal bulk carrier 

generation induces the dark discharge and the carrier photo-
generation induces the photoinduced discharge. The theoretical 
curves for high gamma photoreceptors are calculated by a 

558 ©2011 Society for Imaging Science and Technology



 

 

mathematical structural trap model [2] which takes into account 
both carrier depletion and surface charge injection.   
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Figure 3. Dark discharge characteristics for Digital Photoreceptor HGPC. The 
photoreceptors were measured under conditions where the gasses from the 
corona were not vented. The theoretical curves are calculated with ds= 0.02 
μm, NL = 15 units, Nb = 9.4 x 1013 centers/cm3. The amount of injection 
charges Qij are fixed by the agreement between the theory and the 
observation.  

Figure 3 shows dark discharge characteristics for Digital 
Photoreceptor HGPC. The solid cuves were calculated by the 
mathematical structural trap model with ds = 0.02 μm, the number 
of structural units NL = 15 units, the thermal bulk generation rate 
Gb = 2.0 x 1013 charges/cm3 s, and depletable center density Nb = 
9.4 x 1013 centers/cm3. By agreement between the theory and the 
observation, surface injection charge densities Qij were fixed. The 
photoreceptors were measured under conditions where the gases 
from the corona charger were not vented. We assumed that corona 
generated chemicals on the free photoconductor surface increase in 
accordance with the corona discharge current and as a result 
surface charge injection also increases.  
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Figure 4. Photoinduced discharge characteristics for Digital Photoreceptor 
HGPC. The photoreceptors were measured under conditions where the 
gasses from the corona were not vented. Exposure time is 3.6 ms with light of 
710 nm. The theoretical curves are calculated with L = 16 μm, ds = 0.02 μm, 

NL = 15 units, η0  = 0.95 and Nb = 9.4 x 1013 centers/cm3. The injection charges 
Qij were determined in Fig. 3.  
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Figure 5. Photoinduced discharge characteristics for high gamma 
photoreceptors simulated with various injection charges Qij. 

Figure 4 shows photoinduced discharge characteristics for 
Digital Photoreceptor HGPC. The solid cuves were calculated by 
the mathematical structural trap model with ds = 0.02 μm, NL = 15 
units, exposure time = 3.6 x 10– 3 sec, η0 = 0.95, and Nb = 9.4 x 1013 

centers/cm3. The close agreement between the theory and the 
observation was obtained by using surface injection charge 
densities fixed by the dark discharge characteristis in Figure 3.  

Photoinduced discharge curves for Digital Photoreceptor 
HGPC simulated for various surface charge injection densities are 
shown in Figure 5. The induction exposures of photoinduced 
discharge depend on surface charge injection densities.  It is found 
that the surface charge injection appears as not initial surface 
potential deterioration but as a change in the induction exposure. 
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Figure 6.  Photoinduced discharge characteristics for high gamma 
photoreceptors simulated with various depletable center densities Nb.  
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Photoinduced discharge curves for Digital Photoreceptor 
HGPC simulated for various depletable center densities are shown 
in Figure 6. The slope of photoinduced discharge curves become 
steeper with increasing depletable center density. This 
phenomenon is well described by our strutural trap model. After 
the free carriers detrap into the next structural trap, these carriers 
detrap together with the preexisting depletable charges present in 
the trap. Therefore, as the carrier transport progresses the 
increasing number of free carriers eventually creates an avalanche 
discharge.  It is found that the depletion phenomenon appears not 
as an initial deterioration of surface potential but as a rapid 
photoinduced discharge.  

Effect of  Overcoat  
Figure 6 shows phtoindeuced discharge characterisitics for 

Digital Photoreceptor HGPC with an overcoat layer. The 
photoreceptors were measured under conditions where the gasses 
from the corona were not vented but allowed to build up in the 
apparatus. The solid cuves shown in Figure 5 were calculated by 
the mathematical structural trap model with ds = 0.02 μm, NL = 15 
units, exposure time = 3.6 x 10– 3 sec, η0 = 1.3, Nb = 9.4 x 1013 

centers/cm3, and Coc = 2360 pF/cm2 (e.g. specific dielectric 
constant = 4 and overcoat thickness = 1.5 μm), and the residual 
potential on the overcoat layer Vocr ＝100 V. The close agreement 
between the theory and the observation was obtained by using 
surface injection charge densities Qij = 0. It suggests that the 
overcoat is effective in protecting the high gamma photoreceptor. 
Weiss have reported that a single-layer photoreceptor without the 
overcoat exhibits decreases charge acceptance, however the 
overcoated photoreceptor is complete stable under the same 
condition [9].  
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Figure 7. The effect of an overcoat on the positive corona charging 
characteristics of Digital Photorecptor HGPC. The photoreceptors were 
measured under conditions where the gasses from the corona were not 
vented but allowed to build up in the apparatus. The theoretical curves are 
calculated with ds = 0.02 μm, NL = 15 units, η0 = 1.3, Nb = 9.4 x 1013 

centers/cm3, Cp = 2360 pF/cm2, VOCR= 100 V, and the injection charges Qij = 
0.  

Conclusion 
We have found that the induction effect is due to an 

intermediate trapping by structural units on the pigment [2]. We 
describe a mathematical structural trap model which takes into 
account both depletion charging and surface charge injection. 
Based on this model we have clarified the observation that in high 
gamma photoreceptors as described here, the charge acceptance is 
not reduced in spite of abundant depletable carriers and excess 
surface charge injection. The time dependence of the slow dark 
decay period and the induction exposure change depend on the 
extent of surface charge injection. An overcoat layer is effective in 
protecting the high gamma photoreceptor surface from surface 
charge injection due to corona generated chemicals from corona 
chargers.   
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