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Abstract
The tone reproduction curve (TRC) is a representation of a

printer’s input-output mapping for each primary color. It is a two
dimensional signal with both temporal and tonal characteristics.
With an appropriate signal model that represents the TRC, the en-
tire time-varying TRC can be reconstructed from measurements of
a few time-sequential scheduled print patches. The reconstructed
TRC can then be used as feedback signal for control systems to
compensate for any TRC variations. In the past, signal models
based on Fourier basis and principal components analysis have
been proposed for the design and analysis of the sampling se-
quence and the reconstruction filter. However, the tone reproduc-
tion has localized features in that it variation is less at some tones
than at others. These features have not been exploited in previ-
ous signal models but can potentially improve the effectiveness of
sampling and reconstruction algorithms. In this paper, the local-
ized nature of wavelets is used to capture the ápriori knowledge
of these local features and a wavelet based representation of the
time-varying TRC is proposed. The wavelet based model is ob-
tained from a track of experimentally obtained time-varying TRC
data. The usefulness of this approach is demonstrated from the
reconstruction of a time-sequentially sampled TRC.

Introduction
The tone reproduction curve (TRC) gives the printer’s in-

put to output tones mapping for each CMYK primary color sep-

aration. TRC changes with time due to disturbances in the print

process such as temperature and humidity variations, material age

etc. Therefore the time-varying TRC can be represented by a two-

dimensional signal with a spatial (or tonal) dimension and a tem-

poral dimension. The output of this signal is the output tones i.e.

y = ω(s, t) (1)

where s ∈ [0,1] is the input tones, y ∈ [0,1] is the output tones

and t ∈ ℜ is time. In this paper, wavelet [1] is used to analyze

and represent ω(s, t). A wavelet is a ”small wave” which has its

energy concentrated in time to give a tool for analysis of tran-

sient, non-stationary, or time-varying phenomenon. Unlike signal

models based on Fourier basis and principal component analy-

sis proposed in our previous work [2, 3], wavelet representation

can capture the localized features of ω(s, t) in that variations is

less at some tones than at others. With an effective time-varying

TRC signal model, the entire time-varying TRC can be recon-

structed from measurements of a few time-sequential scheduled

print patches. Time-sequential sampling refers to a sampling tech-

nique where different tone samples are taken at different time in-

stances. The reconstructed TRC can then be used as feedback

control signal to compensate for any TRC variations. The use of

time-sequential sampling as an effective means of sparsely sens-
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Figure 1. An experimental TRC data of a typical xerographic printer at

time-step, t = kT and its variations from nominal

ing the time-varying TRC/CRC is reported in our previous works

[2, 4, 5].

The goal of this paper is therefore to use wavelet to analyze

the time varying TRC and obtained a wavelet based model. The

following items will be presented:

1. Analysis: Based on a track of experimentally obtained time-

varying TRC data, wavelet analysis was conducted to deter-

mine the main characteristics of the two-dimensional time-

varying TRC signal.

2. Modeling: Based on the wavelet analysis, a wavelet based

model is proposed here.

3. Demonstration: Demonstrate the use of the wavelet based

time varying TRC model to formulate an effective filter to

reconstruct time-sequentially sampled TRC.

Wavelet Analysis of Time-Varying TRC
Figure 1 shows the TRC and its error from nominal at a par-

ticular time-step, t = kT for s ∈ {0, 1
15 ,

2
15 , . . . ,1}. The error is

defined here as:

e(s, t = kT ) = ω(s,kT )−ω∗(s) (2)

where ω∗(s) is the nominal TRC. Figure 2 shows the 16 output

tones at different time-step, k for a track of experimental TRC

data. Note that the variations of the output tones depends on the
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Figure 2. Time-varying TRC for cyan with continuous measurement of 1500

prints printed at 60ppm

input tones, s ∈ [0,1]. In addition it is expected that the time vary-

ing TRC have different time scale of variations e.g. the photore-

ceptor which degrades with time results in much slower changes

in printout compare to the effects of changes in environmental fac-

tors, etc. These localized variations motivate the use of wavelet

for representing the time-varying TRC.

In wavelet analysis, any function, f (x)∈L 2(ℜ) can be writ-

ten as:

f (x) = ∑
ℓ

c j0(ℓ)2
j0/2φ(2 j0 x− ℓ)+

∞

∑
j= j0

∑
ℓ

d j(ℓ)2
j/2ψ(2 jx− ℓ)

(3)

where φ(·) and ψ(·) is the scaling and wavelet functions respec-

tively. j0 can be set to any integer value. The choice of j0 sets the

coarsest scale whose space is spanned by 2 j0/2φ(2 j0 x− ℓ). The

rest of L 2(ℜ) is spanned by the wavelets which provide the high

resolution details of the signal. In practice since only the samples

of a signal is given, there is a highest resolution when the finest

scale is at the sample level i.e. j has a finite upper value. See [1]

for details on wavelets.

Since there are only 16 data samples, the highest scale

achievable is J = 4 (corresponding to 2J = 16). With j0 = 0 and

s ∈ [0,1], (3) can be simplified and rewritten for e(s,kT ) of equa-

tion (2) as:

e(s,kT ) = c0φ(s)+
J−1

∑
j=0

2 j−1

∑
ℓ=0

d j(ℓ)2
j/2ψ(2 js− ℓ) (4)

Figure 3 shows this decomposition using the Haar wavelet [1].

At the scaling level and each j wavelet scale level there are the

scaling and wavelet coefficients i.e. [c0], [d0(0)], [d1(0),d1(1)],
[d2(0),d2(1),d2(2),d2(3)], and [d3(0),d3(1), . . . ,d3(7)]. Let this

set of coefficients be given by:

ρ :=

[

c0,d0(0),d1(0),d1(1),d2(0),d2(1),d2(2),d2(3),
d3(0),d3(1), . . . ,d3(7)

]T

(5)

Henceforth let ρ be known as the tonal wavelet coefficients. At
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Figure 3. (a) signal approximation at scaling level; (b) signal approximation

at scaling level and wavelet details at scale j = 0; (c) signal approximation

at scaling level and wavelet details at scale up to j = 1; (d) signal approx-

imation at scaling level and wavelet details at scale up to j = 2; (e) signal

approximation at scaling level and wavelet details at scale up to j = 3
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Figure 4. Magnitude of scaling and wavelet coefficients at all time-steps, k.

each time-step, t = kT , there is a new set of tonal wavelet co-

efficients. Figure 4 shows these coefficients at all time-step. To

analyze the temporal properties of the signal, we looked into the

variations of the wavelet coefficients. For example, lets consider

the c0 coefficient. Performing a 3-levels wavelet analysis on c0 we

have from equation (3) (using c̄0(ℓ) and d̄ j(ℓ) as representation of

the new wavelet coefficients set) represent c0 as.

c0 := ρ(1,kT )=∑
ℓ

c̄0(ℓ)φ(kT − ℓ)

︸ ︷︷ ︸

1α3(k)

+
2

∑
j=0

∑
ℓ

d̄ j(ℓ)2
j/2ψ(2 jkT − ℓ)

︸ ︷︷ ︸

3

∑
j=1

1δ j(k)

(6)

where 1δ j(k) = ∑
ℓ

d̄3− j(ℓ)2
(3− j)/2ψ(2(3− j)kT − ℓ). Figure 5

shows the wavelet analysis for ρ(1,kT ) using the Symlet-4
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Figure 5. Temporal wavelet decomposition of the scaling coefficients c0

using Symlet-4 wavelet.

wavelet. The frequency contents at each level of the decompo-

sition are shown in Figure 6 which is clearly separated into dif-

ferent frequency sub-bands - a distinct low-pass band for 1α3(k),
band-pass bands for 1δ3(k) and 1δ2(k) and a high-pass band for
1δ1(k).

Wavelet Based Model for Time-Varying TRC
From (4), (5) and for J = 4 with M = 16 sample points we

have:







e(s0,kT )
...

e(s15,kT )







︸ ︷︷ ︸

e(k)

=







φ(s0) ψ0,0(s0) . . . ψ3,7(s0)
...

...
. . .

...

φ(s15) ψ0,0(s15) . . . ψ3,7(s15)







︸ ︷︷ ︸

Γ

ρ(k)

(7)

where ψ j,ℓ(x) := 2 j/2ψ(2 jx− ℓ) and Γ gives the wavelet basis

matrix. Generalizing the temporal wavelet analysis on the tonal

wavelet coefficient as given by equation (6), we have:

ρ(i,k) = iα3(k)+
3

∑
j=1

iδ j(k), for i = 1,2, . . . , I =
J−1

∑
r=0

2r (8)

where the signals from the wavelet decomposition can be repre-

sented by a pink noise sequence with appropriate cutoff frequen-

cies and covariance settings i.e.:

iξ α3
(k+1) = iAα3

iξ α3
(k)+ iBα3

iwα3
(k) (9)

iα3(k) = iCα3

iξ α3
(k)+ iDα3

iwα3
(k) (10)

(iAα3
, iBα3

, iCα3
, iDα3

) are obtained from a n-th order Butter-

worth filter with the low-pass cutoff frequency and iwα3
(k) ∼

N(0, iQα3
). Similarly, for j = 1,2 and, 3 we have:

iξ δ j
(k+1) = iAδ j

iξ δ j
(k)+ iBδ j

iwδ j
(k) (11)

iδ j(k) = iCδ j
iξ δ j

(k)+ iDδ j
iwδ j

(k) (12)
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Figure 6. Frequency content (power spectral density) of the temporal

wavelet decomposition of the spatial scaling coefficients c0. (a) frequency

content of the low-pass band for signal 1α3 with cutoff frequency of 0.005

Hz and covariance of 9.47× 10−2 ; (b) frequency content of the band-pass

band for signal 1δ3 with cutoff frequencies of [0.05,0.15] Hz and covariance

of 1.04× 10−2 ; (c) frequency content of the band-pass band for signal 1δ2

with cutoff frequencies of [0.075,0.18] Hz and covariance of 2.20×10−2 ; (d)

frequency content of the high-pass band for signal 1δ1 with cutoff frequency

of 0.31 Hz and covariance of 1.31×10−2

(iAδ j
, iBδ j

, iCδ j
, iDδ j

) are obtained from a n-th order Butter-

worth filter with the appropriate cutoff frequencies and iwδ j
(k)∼

N(0, iQδ j
). The cut-off frequencies and covariance matrices of

each of the n-th order Butterworth filter that model the sub-bands

can be obtained from the wavelet analysis as shown in Figure

6 for i = 1. Let iξ̄ (k) := [iξ α3
, iξ δ3

, iξ δ2
, iξ δ1

]T and iw̄(k) :=

[iwα3
, iwδ3

, iwδ2
, iwδ1

]T , then equations 8-12 can be rewritten as:

ρ(i,k) =
( iCα3

iCδ3

iCδ2

iCδ1

)

︸ ︷︷ ︸

iC̄

iξ̄ (k)

+
( iDα3

iDδ3

iDδ2

iDδ1

)

︸ ︷︷ ︸

iD̄

iw̄(k) (13)

iξ̄ (k+1) = iĀiξ̄ (k)+ iB̄iw̄(k) (14)

Let ρ(k) := [ρ(1,k),ρ(2,k), . . . ,ρ(I,k)]T , we can concatenate

(13) and (14) to yield the following equations:

ρ(k) = C̄ξ̄ (k)+ D̄w̄(k) (15)

ξ̄ (k+1) = Āξ̄ (k)+ B̄w̄(k) (16)

where Ā := diag(1Ā, . . . , IĀ), B̄ := diag(1B̄, . . . , IB̄),
C̄ := diag(1C̄, . . . , IC̄), D̄ := diag(1D̄, . . . , ID̄),
ξ̄ (k) := [1ξ̄ (k),2 ξ̄ (k), . . . ,I ξ̄ (k)]T and w̄(k) :=
[1w̄(k),2w̄(k), . . . , Iw̄(k)]T . Substituting (15) into (7) we

have:

e(k) = ΓC̄ξ̄ (k)+ΓD̄w̄(k) (17)

Equations (16) and (17) give the wavelet based print variations

model. This model gives a more rigorous model for modeling
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Figure 7. Sparse sensing of an experimental track of time-varying TRC us-

ing the optimized time-sequential sampling and reconstruction filter using the

(a) proposed wavelet based model and (b) Fourier based model proposed in

our previous work. Top three figures show the errors between the recon-

structed and actual TRC at three different input tones - 0%,40% and 90%.

Bottom most figure shows the norm squared of reconstructed and actual

TRC errors.

the TRC variations. In the next section we demonstrate the ef-

fectiveness of using the wavelet-based TRC variations model in

reconstructing time-sequential sampled signals.

Use of Wavelet Based Model for Reconstruct-
ing Time-Sequential Sampled Signal

The wavelet based model of the time-varying TRC is used

here as the basis for a reconstruction filter of time-sequentially

sampled signal. Time-sequential sampling refers to a sampling

technique where different tone samples are taken at different time

instances. To recover the complete TRC signal from these time-

sequentially sampled tones, a reconstruction filter using a periodic

Kalman filter was proposed in [2]. Effectiveness of this filter to

recover the TRC depends on the time-sequential sampling design

and the time-varying TRC model. The former was addressed us-

ing the optimized time-sequential sampling design in the lattice

framework [6, 7]. The latter was addressed in this paper using the

wavelet based model, that accounts for important localized varia-

tions of the TRC.

Figure 7(a) shows the results of using this model based on the

identified parameters given through the wavelet signal analysis for

reconstructing the time-sequentially sampled signal. The result

clearly shows much better reconstruction performance compared

to the Fourier based model proposed in our previous work [2] as

shown in Figure 7(b). Hence, the use of the wavelet based model

improves the fidelity of the TRC reconstruction.

Conclusion
The experimental track of time-varying TRC shows that this

signal class contains both localized tonal and temporal features.

This motivates the use of wavelet descriptors since wavelet basis

are localized. Wavelet gives a cohesive framework to analyze and

represent the time-varying TRC. In paper we show that the time-

varying TRC can be effectively represented using wavelet coef-

ficients to capture the àpriori knowledge of local features. The

wavelet representation is shown to give high fidelity reconstruc-

tion of time-sequentially sampled tones. In addition, the wavelet

framework enables extension to analyze and represent the time-

varying color reproduction characteristics (CRC) function.
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