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Abstract
Persistent conflicts between toner adhesion measurements

and theory have prompted scientists and engineers to propose

a myriad of models for particle adhesion. Adhesion, generally

consisting of an electrostatic component and a non-electrostatic

component (i.e. van der Waals), is a critical factor in determin-

ing transfer efficiency in laser printers. The electrostatic compo-

nent of adhesion depends upon many factors: toner size, shape,

and composition; development and transfer voltages; and design

parameters such as component materials, geometry, and process

speed. Many of these factors are directly related to the charge

distribution and dielectric properties of the particles. In order to

account for these factors, different analytical models have been

proposed that separately consider dielectric polarization, charge

distribution, and neighboring particles. Still, measurements of

electrostatic adhesion force tend to be as much as one order of

magnitude higher than calculations. We propose a fully ana-

lytic model of particle adhesion that incorporates many of these

factors including, multiple particle and image force interactions,

non-uniform charge distribution, and dielectric polarization. The

multi-particle force model consists of a field expansion in the

spherical basis followed by integration of the Maxwell stress ten-

sor. Combining these physical mechanisms bring the predicted

adhesion on spherical particles closer to measured results.

Introduction
Overcoming charged particle adhesion is critical to the elec-

trophotographic process, particularly development and transfer.

However, significant confusion regarding how to model adhe-

sion illustrates the overall lack of understanding. As stated by

Schein [6]

. . . experiments have shown that the adhesion is at least

one order of magnitude larger than predicted by a

model in which the charged object is represented by

putting the total charge in the center of the object.

Even with modifications to include nonuniform charge

distributions and nonelectrostatic forces of adhesion,

these models cannot explain the observations.

This represents a real scientific problem in applied physics and a

significant issue for the laser print industry. The issue is compli-

cated by the fact that there are both long-range electrostatic forces

and short-range mechanical (Van der Waals) forces, as well as in-

teractions between the two [10]. Several models have been ad-

vanced to explain the electrostatic component of charged particle

adhesion [7].

In this correspondence, we provide a complete analytical

model of electrostatic adhesion of spherical toner. The model si-

multaneously includes the effects of multiple charged particles,

dielectric polarization, and non-uniform surface charge distribu-

tion. Two main issues are addressed using this model.

1. Toner adhesion measurements are consistently about one or-

der of magnitude larger than predicted by the simple model

of a point charge above an image plane [6].

2. Recent measurements of toner adhesion reveal that adhesion

force versus mean toner charge varies by both a squared

term given by Coulomb interaction with it’s image and a

linear term not previously understood [10].

Adhesion Models for Spherical Toner
The most basic model for toner adhesion is Coulomb attrac-

tion between a point charge and it’s image, referred to herein as

the point-image force. This model represents a single spherical

particle with dielectric constant εp = 1 and continuous, uniform

surface charge density. For a particle with radius R resting on an

image plane, the force acts only in the ẑ-direction and is given by

the equation

F̄0 =−ẑ
q2

16πε0R2
, (1)

where q is the total charge on the particle and ε0 is the permittivity

of the surrounding air. There are three immediate extensions of

this model that have been considered.

First, the multiple point-image model considers J point

charges interacting with all corresponding images. Like the point

image model, it assumes uniformly charged spherical particles all

with dielectric constants εp = 1. The mathematical generalization

is
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q j
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where the first term in the brackets gives the interactions between

the jth particle and all other particles and the second term in the

brackets gives the force between particle j and all images. Be-

cause of all the interactions between toner charge and all images,

this model produces a larger adhesion force than the point-image

model.

Second, a uniformly charged dielectric particle with arbitrary

dielectric constant εp has been proposed as a more accurate model

for toner adhesion than the point-image model [1]. The system

can be solved analytically in spherical coordinates with the ap-

propriate translational theorem [8]. Alternately, the bi-spherical

coordinates [12] can be used for a particle above an image plane,

or the degenerative bi-spherical coordinates [5] apply to a particle

resting on a plane. The dielectric polarization produces additional

force between the induced dipoles and the image. Thus, the adhe-

sion of a uniformly charged dielectric sphere resting on an image

plane results in a net increase over the point-image force.
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Third, discrete, uniform charge distribution on a single

spherical toner has also been proposed as a suitable model for

toner adhesion [2]. The interesting consequence of the discrete

charge surface charge model is the so-called proximity force. The

proximity force for a single particle with dielectric constant εp = 1

F̄proximity = (1+4/π)F̄0 (3)

results in about twice the adhesion as the point image model. The

enhancement is due to the assumption of discrete charges closest

to the image plane.

Each of these established adhesion theories are plotted ver-

sus particle charge in Figure 1. All models assume uniformly

distributed surface charge. The multiple point-image model pro-

duces the largest force of greater than 5x the point-image force for

the case of J = 9 (i.e. a particle and 8 nearest touching neighbors).

The proximity force produces a force > 2x the point-image force,

while the dielectric particle with εp = 3 provides only about a

50 % enhancement. Furthermore, each of the curves is represent a

function of Q2 only. The remainder of this paper will explore two

hypotheses: (i) if the aforementioned models are combined into

one general theoretical model, the resulting enhancement should

produce the 10x enhancement in adhesion force necessary to com-

pare with measured results, and (ii) non-uniform surface charge

may explain the Q dependence of adhesion force seen in experi-

mental results [10].
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Figure 1. Adhesion force versus total particle charge for a few existing

models of uniformly, charged spherical toner. A dielectric particle with εp = 3,

the proximity force, and multiple point-image model with J = 9 total particles

give enhancements over the point-image model of about 1.5x, 2x, and 5x,

respectively.

Analytical Multiple Particle Model
The analytical multiple particle model presented here con-

sists of expansion of the spherical modes with particle-to-particle

translations for application of the boundary conditions [8]. We

have previously applied similar analytical models to The electro-

static potential external to particle j is

ψ
( j) =

∞

∑
n=0

n
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B
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where (r j,θ j,φ j) are the spherical coordinates with the center of

particle j taken as the origin and Pm
n (·) represents the associated

Legendre function. A similar expansion is applied for the poten-

tial internal to the particle. The unknown coefficients B
( j)
nm and

W
( j)
nm provide the magnitudes of the modes for particle j and all

other particles and images, respectively. The surface charge den-

sity is also expanded in the orthogonal spherical basis,

ρ
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and the unknown coefficients α
( j)
nm are determined by least squares

fit to arbitrary surface charge distribution. Once the α
( j)
nm are

defined, the coefficients B
( j)
nm and W

( j)
nm are determined from the

boundary conditions. First, the translational theorem contained in

Ref. [8] is used to express all other particles and images besides j

in the (r j,θ j,φ j) system. The W
( j)
nm coefficients are related to the

B
( j)
nm coefficients for all other particles by

W
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where T
( jk)

nmνµ give the elements of a 6-rank tensor and both B
( j)
nm

and W
( j)
nm give the elements of tensors of rank 3. The boundary

conditions yield the additional relation between the coefficients
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Substituting Eq. (6) into Eq. (7) yields a linear equation with re-

spect to B
( j)
nm, which is solved via matrix inversion. Finally, the

electrostatic adhesion force on particle j (i.e. the force in the −ẑ

direction) is given by a simple summation of mode coefficients [4]
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Discussion
Non-uniform charge distributions on toner particles have

long been suspected as being responsible for increased adhesion

force [3]. It is known that partial charge distributions on the bot-

tom of the particle closest to the image plane result in significant

enhancements to adhesion force. In printer systems, recharging

typically occurs to the top of the particle, for example during the

passage of toner on an intermediate transfer belt through addi-

tional first transfer nips. However, it has been pointed out that

such charge imbalances will result in a net moment on the particle

causing the particle to rotate so that the partial distribution will be

oriented closest to the image plane [9]. In the model implemented

here, any arbitrary charge distribution can be incorporated. We

choose a model that mimics the operation of toner. We assume

that additional charge is deposited onto the top half of the parti-

cle. Because the particle is spherical, we assume a cosine function

for the additional charge distribution. If the particle then rotates

under the additional force imbalance, the charge on the bottom of

the particle (π/2 < θ < π) is be described by

ρ
( j) = ρ

( j)
0 −∆ρ

j cos (θ ) (9)

and ρ
( j)
0 on the top of the particle (0 < θ < π/2). This charge

distribution is shown in Fig. 2 along with the spherical mode ex-

pansion used to represent the charge density. In the case shown,
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the total charge is Q = 10 fC, obtained by integrating the charge

density over the surface of the sphere.
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Figure 2. Charge distribution used in the model along with the spherical

mode representation N = 10 using a summation of Legendre functions. For

this case, ρ0 = 0 and the total charge per particle is Q = 10 fC.

Equation (8) provides the most complete analytical model

of electrostatic toner adhesion to date. It allows for all of the

models previously discussed to be incorporated within the same

calculation. Figure 3 shows a plot of FE for the case of a collection

of J = 9 dielectric particles (εp = 3) with the particle of interest in

the center surrounded by 8 nearest neighbors touching on a square

grid. Both cases of uniform and nonuniform charge distributions

are shown along with the point-image force F0 for comparison.

The uniformly charged particles result in about 7x enhancement

over the charge-image model, while the non-uniformly charged

particles yield a 10x increase.
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Figure 3. Electrostatic force from the presented analytic model of adhesion

versus charge. The dielectric constant of all the particles is εp = 3 and the

9 particles are touching on a square lattice. The forces shown are for the

center particle under uniform and non-uniform charging. The adhesion force

plotted is the force acting toward the image plane in the −ẑ direction.

An additional observation when studying non-uniformly

charge distributions is the existence of a linear Q term which is not

present for uniform charge distributions. To illustrate why this is,

refer to Fig. 4. Each point along the force versus charge plots (e.g.

Fig. 1 and Fig. 3) represent a separate experiment where down-

stream 1st transfer stations are typically used to provide additional

charge [11, 10]. After reorientation, the toner rests with additional

charge on the bottom closest to the image plane. Consider the sim-

ple case where a particle has discrete charges q1 and q2 on the top

and bottom, respectively. The total charge is Q = q1 +q2. The to-

tal force is obtained by summing forces between the charges and

the images

F̄ =−ẑ
1

4πε0

[

q2
1

(4R)2
+2

q1q2

(2R)2
+

q2
2

(2δ )2

]

. (10)

Successive experiments tend to increase q2 while maintaining q1

constant. Therefore, q2(Q) = Q−q1 and the terms in the brackets

can be written as
[(

q2
1
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−
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1
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)
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(

1
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]

, (11)

and a plot of force versus charge will include a linear term and a

constant term (q2 is constant).

Figure 4. Example non-uniform charge distribution for illustration. (left) A

particle above an image plane with dielectric constant εp = 1 and radius R

has discrete charges q1 and q2 on the top and bottom, respectively. (right)

Image theory equivalent of the charge distribution.

As an example, Fig. 5 shows the plot of adhesion force

versus charge for a single dielectric particle with base uniform

charge of 3 fC and additional charging up to a total of 10 fC us-

ing the previously described charge distribution. The polynomial

f = 2.01−2.87Q+1.13Q2 fits the model output exactly, with the

Q and constant terms arising from the non-uniform surface charge

distribution. Therefore, the general dependence of particle adhe-

sion force on charge is

fadhesion = A0 +A1Q+A2Q2 +A3Q3
, (12)

where A0 comes both from mechanical adhesion and interaction

between the base uniform charge density and the superimposed

non-uniform charge distribution , A1 gives the proportion of force

due to non-uniform charging, A2 gives the proportion of electro-

static force due to all Coulombic interactions, and A3 is due to

mechanical and electrostatic force interactions [10]. Since the

ρ0 = 0 in the calculations in Fig. 3, those plots are quadratic in

Q with A0 = 0 and A1 = 0.

Conclusions
An analytical model of electrostatic particle adhesion has

been presented which incorporates multiple particles, arbitrary di-

electric constants, and non-uniform surface charge densities. In-

cluding the effects of dielectric constant, multiple particles, and
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Figure 5. Force versus charge for a single dielectric particle with εp = 3. The

particle has a uniform base charge density ρ0 providing 3 fC of charge plus

an additional charge according to Eq. (9) to bring the total charge to the value

indicated on the graph. The resulting curve has both linear Q and squared Q2

dependence. The markers show the output of the analytical adhesion model

and the line indicate the best fit curve.

non-uniform charge density can provide more than 10x enhance-

ment over the standard model of a point charge above a ground

plane. Furthermore, the non-uniform charge density adds a lin-

ear term and a constant term when plotting force verses charge.

Because the mechanical (i.e. van der Waals) force is also inde-

pendent of charge, separating electrostatic and non-electrostatic

forces from experiments involving non-uniform charge distribu-

tions may be very difficult. Recent experimental work indicate

that an additional factor proportional to Q3 is due to interaction

between electrostatic and non-electrostatic forces. Therefore, at-

tempts to separate the electrostatic and non-electrostatic mechan-

ical adhesion contributions by experimentally varying charge re-

mains a challenge.
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