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Abstract 

Understanding charged particle adhesion forces is a critical 

step in the understanding and modeling of electrophotographic 

printing processes.  Electrostatic and mechanical (Van der Waals) 

forces are both significant contributors to toner adhesion to 

substrates, and previous work has shown these to have roughly 

equivalent magnitudes in modern printer designs.  Measuring 

distributions of toner adhesion as a function of multiple 

parameters including environmental and toner charge variation 

has revealed that there are additional interactions beyond 

Coulombic Attraction and dipole induced London-Van der Waals’ 

forces which are significant contributors to system performance.  A 

model for toner adhesion is presented, including a term which 

describes the increased adhesion resulting from particle 

deformation at higher temperatures.  Experimental results show 

good correlation to the model.  

 

Introduction 
There has been controversy as to the relative roles of Coulombic 

and dipole induced mechanical attraction in the development and 

transfer of toner [1]. Measurements of toner adhesion have shown 

that toner, not covered with surface additives to reduce adhesion 

(EPAs), were highly adhered to a variety of substrates, more varied 

in their adhesion and less dependent on toner charge [2,3]. The size 

of toner also has an impact on toner adhesion with smaller toner 

more critically impacted by non-charge dependent forces [1,4].  

Understanding toner adhesion has been hindered by the difficulty 

in measuring a distribution of toner adhesion for actual printing 

systems.   

 

The recent development of a toner adhesion measurement tool 

based on an air jet to remove toner and optical measurements to 

quantify that removal distribution has allowed for a new level of 

testing of the factors contributing to toner adhesion [5].  The tool 

has been used to quantify toner adhesion in actual printing systems 

including on photoconductors and transfer belts, and under a 

variety of actual printing conditions.  The initial results of this tool 

coupled with scanning electron microscope analysis of high and 

low adhesion toners confirmed that contact area, either reduced 

due to EPA loading or increased due to toner damage in transfer, 

had a significant impact on toner adhesion and therefore toner 

performance.  Additionally, the range of adhesion forces for toner 

on a transfer belt in current electrophotographic printers ranged 

from less than 10nN to over 1000nN within one sample. Within 

those samples the toner mid to low adhesion forces were quite 

predictable when particle charge was known.   

 

Actual printing systems provide a variety of challenges to the 

development community as they are required to perform well 

under a wide range of environmental and other operating 

conditions.  Measuring key parameters, such as toner adhesion, 

under actual printing conditions yields an understanding of actual 

process mechanisms.  That understanding, in turn, should lead to 

better product design and performance.  

 

The Two-Term Model  
The controversy surrounding toner adhesion has centered on the 

assumption that there are two key mechanisms contributing to 

toner adhesion to any substrate.  These two forces are the long 

range Coulomb attraction/repulsion forces and the close range 

dipole forces; also known as Van der Waals forces, London-Van 

der Waals forces or dispersion forces [1]. These forces act both 

between particles and between particles and substrates, and are 

complicated by the application of external fields for development 

and transfer and by the non-uniformity of charge on the toner 

[3,6,7] 

 

The first of these mechanisms is the long range Coulomb 

attraction/repulsion forces.  The attraction force between two 

charged particles at a distance is known to be a function of the 

charges on the two particles and the distance between them.  

Known as Coulomb’s law or Coulomb’s inverse square law, it 

suggests that at a reasonable distance the force between two 

particles not on a substrate would be: 

 

F=ke (q1 q2)/r
2        (1) 

   

Where:  

• ke = 1/(4πεo) ; εo the permittivity of free space = 

8.854E-12 F/m 

• q1 and q2 are the charges on the two particles  

• r is the distance between two particles 

 

 

Coulomb’s law defines these electrostatic distance forces to be a 

function of the square of the charge, so any term in an adhesion 

equation resulting from these forces should also be a function of 

the square of the charge.  This was then used to predict a close 

range Coulomb attraction between a toner particle and an 

oppositely charged “image” of the toner particle which is the result 

of polarization of and/or conduction in the substrate.  The distance 

between the two particles can be replaced by the diameter of the 

toner that represents the mathematical offset between a charge at 

the center of the uniformly charged toner and an opposite charge at 

the theoretical center of the image. An additional proportionality, 

αααα, was added to reflect the polarization of the particle base 

material making this force material dependent. [8]   

 

FI = Image force = αααα  q2/(4πεπεπεπεod
2)   (2) 

 

Where:  

• d is the toner particle diameter  

• q is the toner particle charge 

 

When applied to toner on a dielectric substrate, Coulomb’s law 

can be used to describe the attractive force between charged toner 

and the image area created by charge separation in the dielectric 

substrate.  This image charge area is complicated by the presence 

of multiple toner particles in close proximity [9].  It is convenient 
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to refer to these forces as electrostatic forces as they are a function 

of the charge of the particle. 

 

When particles “touch”, meaning that the distance between 

adjacent molecules is on the order of a few hundred angstroms, 

intermolecular forces come into play that greatly enhance 

adhesion.  These intermolecular forces are thought to be a result of 

dipole interactions of the materials involved and are a function of 

material properties and contact area as given by the Johnson-

Kendall-Roberts (JKR) equation [10].   

 

FVan der Waals =-3/2 Wa ππππ R        (3)    

 

Where:  

• Wa is the work of adhesion   

• R is the radius of toner particle 

 

Given a printer system with a constant toner, environment, 

speed, and field parameters, the adhesion of toner to a substrate 

like a transfer belt would be expected to be a function of 

electrostatic and mechanical forces.   

 

Fa = FVan der Waals + Felectrostatic = A + Bq2  (4) 

 

When charge is in Coulombs x 10-15 and diameter is in microns 

the units will cancel so that B≅ 2.5 depending on the specific 

toner diameter.  Kemp [9] presented a more exact relation between 

charged multi-particles, and that suggests that the coefficient “B”, 

and the other electrostatic coefficients, should be a number 

between 0 and 1 for the electrostatic portion of the attraction.  As 

has been reported in the literature, the actual values of Fa measured 

are about an order of magnitude higher than theoretically predicted 

by electrostatic attraction. 

 

In a two transfer system it is possible to change the charge on 

toner entering the second transfer nip by changing the voltage 

applied at successive first transfer stations down stream of the 

initial transfer.  This allows the charge to be changed 

independently of other variables allowing for adhesion data that 

separates Van der Waals and electrostatic parts.  Figure 1 shows a 

graph of toner adhesion as a function of toner charge that was 

created in this way.  The environment was held at 60oF, 8% 

relative humidity and the samples were taken from toner that had 

been transferred to an intermediate belt just before it entered a 

second transfer nip.  Each measurement produced a distribution of 

adhesion, and the force for 50% removal is shown.  Superimposed 

on that data is a theoretical curve using the format described in 

equation (4), where A=50nN and B=7.0.  In this theoretical 

prediction, A=50nN would represent the mean Van der Waals 

adhesion force for the samples.  The slope factor on the charge 

squared term, B=7.0, contains within it a  combination of the 

constants in Coulomb’s law, the diameter of the toner which in this 

case is taken at about 6 µm, and the interaction of multiple charged 

particles in a given area.  The additive effect of multiple particles 

on adhesion has been discussed as the image forces from other 

particles in close proximity should be additive.  Those particles in 

a pile that are in closest proximity to the base material will 

experience the strongest effect and those in the center and top of 

the pile will experience the smallest.   Fields from dipole effects 

have been sited as a multiplier of 6.95 to 6π [1,4,11]. 

   

Theoretical prediction and experimental data for 50% toner 

removal, 60F/8%RH 
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Figure 1: Median toner removal force as a function of average 
per-toner charge.  The theoretical curve represents a two term 
prediction based on electrostatic and Van der Waals 
attractions. 
 

The quality of fit between theoretical and experimental is 

acceptable although it appears that the experimental curve may be 

more sensitive to charge than is predicted by the two term model.   

 
The Impact of Environment 

Given the predictive equation described above, toner adhesion 

for the same system should be predictable at different 

environments.  It is quite conceivable that the initial constant “A” 

might change as the work of adhesion changes, for example with 

the presence of water bridges at higher humidity. However the 

electrostatic portion should be a function of toner charge only.  

This is not what actually happens when the system is tested.  

Figure 2 shows data for toner adhesion to an intermediate transfer 

belt for three different environments 60F/8% relative humidity; 

75F/40% relative humidity and 78F/80% relative humidity.  For 

the same charge on the toner there are different adhesion values, 

and that difference is a function of the toner charge. The two term 

model can be modified to give a good general prediction of the 

adhesion force measured.  However the model is not capable of 

reflecting the change in adhesion response to charge that is seen 

changing with environment. 

 

Comparison of adhesion for different environments
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Figure 2:  Data for adhesion of toner to an intermediate belt 
where the printer was acclimated and stopped during the 
printing process at each of three different environments.   
 

The Physics of Warm Toner Transfer 
The existence of a change in charge-response in different 

environment conditions suggests an additional physical 

mechanism. The first step in identifying and understanding this 

mechanism is to separate the temperature effect from the humidity 
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effect to see which of these, or both, is causing the change in 

charge sensitivity.   

 

Figure 3 shows the results of tests of adhesion with charge to 

separate out humidity from temperature effects.  Toner adhesion 

was tested at a matrix of high and low temperatures and high and 

low relative humidity to determine the relative impact of each 

parameter.  The graph shows that the data falls into two groups 

divided by temperature.  Warm temperatures have higher adhesion 

than cooler temperatures across a wide range of relative humidity 

levels.   

 

Water bridges under particles are frequently a source of higher 

adhesion with increased humidity, however a function of adhesion 

with  relative humidity was not apparent.  There are two reasons 

why water bridges are not likely significant in toner adhesion.  The 

first is that the temperature of the components of a transfer system, 

while printing, are slightly above that of the ambient environment 

discouraging water condensation.  Secondly, toner spends only a 

few seconds on the transfer belt before being transferred to paper 

limiting time for condensation. 

Toner adhesion as a function of charge for different temperature and 

humidity environments
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Figure 3: Data from toner adhesion testing at 90

o
F/ 8% relative 

humidity; 78
o
F/ 80% relative humidity; 60

o
F/ 8% relative 

humidity and 60
o
F/ 80% relative humidity.  Data is shown as a 

function of toner charge for each sample, which was 
manipulated with transfer voltages.   

  

There are several possible mechanisms for heat to impact toner 

adhesion.  If temperature simply made toner more mechanically 

adhesive, the expected outcome would be a curve with the same 

sensitivity to charge, but a higher offset.  There is an offset 

difference seen in the data above, suggesting that potentially the 

“wet-ability” of the material could be changing with temperature.  

This offset can be compensated for by altering the coefficient A in 

the two-term model.  Coefficient B should not be sensitive to 

changes in material properties. As a result the slope of the data 

should remain the same.  This is not the change seen in the data in 

figure 2.   

 

Another potential mechanism could be the heat causing a small 

relaxation in the toner particle resulting from a change in modulus 

of elasticity.  A decrease in toner modulus would cause a small 

deformation of the particle as electrostatic forces pulled it toward 

the transfer belt.  This could change the adhesion of the toner to the 

substrate in two ways.  The first mechanism would be the decrease 

in distance between the toner and its image charge.  The second 

mechanism would be an increase in contact area caused by the 

modest deformation.   

 

In 2006, Jurgen Thomas published his PhD dissertation on the 

Mechanics of Particle Adhesion. [12]. Thomas’ work describes the 

deformation of a particle under the pull of gravity.  Using his work 

and substituting the Coulombic attraction for gravity one can make 

an estimate of the relative potential contribution of each of these 

mechanisms.  If the modulus of elasticity were to drop by half, the 

relative change in the height between two dipoles would be only 

0.001 µm.  That small of a change does not make any measurable 

impact on Coulomb attraction.  The same change in height would 

make a difference in the radius of the contact area from 0.04 µm to 

0.05 µm.   This change makes the difference in contact area 

increase by 62% which will have a significant impact on adhesion.  

The normal force on a particle from the substrate is a function of 

Coulombic attraction, which is a function of toner charge squared.  

The adhesion measured by rolling resistance is a function of the 

normal force to the 3/2 power.  Inserting a charge squared term in 

for normal force yields a pull off force that is sensitive to the 

charge of the toner cubed.   

 

The first order impact of the adhesion of a particle as a function 

of the modulus of elasticity has been suggested many times [12] 

Actual changes in toner modulus with temperatures lower than the 

toner softening point are not readily available, but the hardness of 

the material is not a step function.  The gravitational force on a 

6µm toner particle is roughly 0.0013nN, where as the dielectric 

pull from a -20 µC/g, 6µm diameter toner particle on a substrate 

would be 17nN which is much more significant and is therefore the 

key contributor to the footprint of the toner on the substrate.    

 
Comparison to Experimental Data 

Examining adhesion of toner at different environments sheds 

light onto the actual physics of particle adhesion.  The proposed 

model is now a cubic polynomial based on this work and the work 

described by B. A. Kemp [9]. 

 

Fa = A + Bq + Cq2 +Dq3                               (5) 

 

Where: 

• A represents the Van der Waals attraction forces 

• Bq represents the additional force due to non-uniform 

charges [15] 

• Cq2 represents the actual Coulombic attraction arising 

from multiple particles 

• Dq3 represents the Van der Waal attraction that is a 

function of the toner footprint from the Coulombic 

attraction forces 

In reviewing this model, only the A and D coefficients are likely 

to change as a function of temperature.  Coefficient A can change 

as toner or the substrate can change wet-ability with increased 

molecular energy.  Coefficient D can change as the modulus of 

elasticity drops as the material softens slightly with temperature.  If 

this model is capturing the main features of the physics, it should 

be able to track the change seen across environments.  Figure 4 

shows the experimental data with theoretical warm and cold 

curves.   
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Comparison of adhesion for different environments
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Figure 4: Adhesion data for toner on a stopped intermediate 
belt immediately following printing at different environments.  
The two theoretical curves show the difference in curvature 
with charge as a function of the environment. 
 

For the warm curve shown in figure 5 the coefficients of 

equation (5) are: A=350nN, B=4.0 indicating the effect of non-

uniform charge, C=1.0 (for the Coulomb attraction) and D=1.0.  

For the cold curve the coefficients are: A=150nN, B=4.0, C=1.0 

and D=0.5.  Non-uniform charge was enhanced in all of these data 

sets due to the manner in which the higher charge samples were 

obtained – namely increasing transfer voltage downstream of the 

initial transfer station to shower the toner with charged ions.   

 

Different toner designs and different transfer belt substrates will 

yield different values for these coefficients. However warmer 

ambient environments always lead to an increase in adhesion over 

cold environments for any toner charge level.    

 

Conclusions 
Toner adhesion to an intermediate transfer belt in a printer is 

increased with increasing temperature, but is not strongly impacted 

by relative humidity.  The toner adhesion also has a different 

response to toner charge for different temperatures that is not 

predicted by the traditional sum of Van der Waals and Coulomb 

Attraction models.  Temperature likely impacts the molecular wet-

ability of the toner, while it also slightly softens toner making it 

more susceptible to deformation under load.  Charge on the toner 

surface is the main loading on toner.  Increased toner charge will 

have a stronger impact on contact area in a warm environment than 

in a cool one.  The increase in contact area with toner charge 

results in a proposed additional cubic function of the toner charge 

term, to compensate the adhesion model.   
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