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1. Abstract 
In electrophotographic (xerographic) marking systems the 

toner adhesion state impacts development, transfer, cleaning, and 
toner transport. The adhesion state can be linked to critical to 
customer responses (CTCs) like color consistency and stability, 
color macro-uniformity, color accuracy and gamut, and image 
noise and mottle. In this paper we will discuss the key control 
factors that impact the toner adhesion state and provide specific 
examples of how the toner adhesion state may be optimized 
through improved toner design (materials) and closed loop 
feedback and control (hardware and controls) within xerographic 
engines [1]. The linkage between toner adhesion state control 
factors and the CTCs is illustrated in the process diagram in figure 
1. Improved control of the toner adhesion state may be enabling 
for expanded media latitude and 6 to 8 color tandem intermediate 
belt xerography.  

We have measured and simulated the electric field 
detachment distributions of toners with differing properties to 
improve our understanding of how the key control factors and their 
distributions impact adhesion and toner detachment. Monte-Carlo 
simulations using extensions of the adhesion models developed by 
James Feng and Dan Hays have proved particularly helpful in 
interpreting the measured detachment field distributions, 
quantifying how the control factors (mean and variance) impact 
these distributions, and improving our fundamental understanding 
of the electric field detachment of toner.  
  

 
Figure 1 Toner State Control process flow diagram 

2. Results and observations 
A measured detachment field distribution is illustrated in 

figure 2 for conventional mechanically ground toner with a 
tribocharge of Q/M = 37μC/g. Toner was developed to a 
photoreceptor surface and then transferred to a tuned conductivity 
intermediate transfer belt (ITB) over a range of electric fields  in a 
commercial printer (Xerox DC12) . The percentage of the toner 
mass per unit area (RMA = Residual Mass per unit Area) 
remaining on the photoreceptor after passing through the high field 
transfer nip region was measured at each applied transfer field. The 
transfer field was varied from roughly 0 V/μm to fields exceeding 

the nominal value of roughly 60 V/μm used during normal print 
operation.  

The peak applied transfer field is estimated based on a Biased 
Transfer Roll (BTR) electric field nip model that accounts for a 
host of control factors including the voltage applied to the BTR 
shaft, the surface potential of the photoreceptor, BTR & ITB 
resistivity and dielectric thickness, charge deposition on the ITB 
and photoreceptor surfaces due to air breakdown, toner pile height 
and charge, process speed, etc. The model may (from Gauss’s law) 
overestimate the transfer field [V/μm] by as much as 
1.13*(Q/M)*(M/A)*(1-RMA/100), where Q/M the toner charge in 
μC/g, M/A is the toner mass per unit area on the photoreceptor 
prior to the application of the transfer field in the nip (M/A ~ 0.45 
to 0.5 mg/cm2 in these experiments), and RMA is the fraction of 
toner that has transferred to the image receiving substrate at a 
given field. We chose not to include this Gauss’s law correction to 
the model because it may not be applicable since transfer occurs 
across very small air gaps that are on the order of the diameter of a 
toner particle. Therefore, the expression above gives an upper 
bound in the overestimate of the field. 

 
 
Figure 2 Measured detachment field distribution for conventional toner 

The solid red line is a Gaussian fit to CDF(E) = 100% - 
RMA(E), where RMA(E) is the measured RMA (black points), 
and the CDF(E) is the cumulative distribution function for a 
Gaussian distribution. The Gaussian PDF (Probability Density 
Function, i.e. the bell shaped curve/histogram representing the 
detachment field distribution) corresponding the CDF is plotted as 
a dashed red line. There are several features of this curve worth 
noting. The detachment field distribution is extremely broad (see 
(2) in figure 2), and includes some toners that detach at very low 
fields. Toners that detach at fields less than 3 V/μm (see (1))can 
lead to image noise and blur due gap transfer prior to the 
establishment of intimate contact between the substrate 
(Intermediate Transfer Belt) and image bearing member 
(photoreceptor). The mean detachment field for the toner is about 
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26 V/μm (3) and most of the toner (~96%) has detached below 55 
V/um. Between 55 and 70 V/μm there is a flat region (5) 
representing about 4% of the toner. This toner belongs to a sub-
population of “un-detachable toner” that does not detach despite 
the increasing transfer field.  

The un-detachable sub-population of toner can be understood 
by examining the net force on a toner particle. This force can be 
represented by the following equation from the Feng-Hays 
adhesion model [2-4]: 
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 (1) 
Where FToner is the net force on the toner, βQE is the Lorentz 

pull-off force due to the applied field (E), the second term is the 
image force adhesion, the third term represents the adhesion due to 
the dipole moment induced by the applied field, and the final term 
represents non-electrostatic adhesion forces like the van der Waals 
force. The α, β, γ terms in the equation account for multipole 
interactions and θ, the uniformity of the charge distribution on the 
toner particle [2-4]. The parameter θ is also illustrated in figure 5. 

The net force on conventional toner is plotted in figure 3 for 
different values of Q/M (Tribocharge) in units of μC/g. The 
distribution of the charge on the toner particle surface was assumed 
to be highly non-uniform with a polar half angle of θ = 10o (see 
figure 5). A toner will only detach if the pulloff force exceeds the 
adhesion, i.e. the net force (FToner) is greater than 0. At a Q/M of -
40 μC/g (red curve) the toner detaches at a field of about 46 V/um, 
well below the nominal peak nip field of ~ 60 V/μm. The net force 
on low charge toner, however, never becomes positive at any 
applied field, so these low charge toners contribute to the un-
detachable sub-population. This is illustrated in figure 3 by the 
curves for Q/M = -15 and -5 μC/g.  

 
 
Figure 3 net force on a toner particle 

Why is it that EA toners have higher transfer efficiency 
(lower residual mass per unit area (RMA)) at typical nominal peak 
transfer fields?  We investigated this by measuring the detachment 
field distributions for chemically grown potato- and sphere-shaped 
EA (emulsion aggregate) toners with properties similar to the 
conventionally ground toner (see table 1). The PDFs extracted 
from the experimental results are shown in figure 4. Note that the 
mean detachment distributions for the EA potatoes (Blue) and EA 

spheres (red) with Q/M similar to conventional (black) had nearly 
the same mean detachment field and width. The RMA(E) at a 
nominal peak transfer field of 60 V/μm was, however, only 0.6% 
and 0.2 % for the EA potatoes and spheres respectively, well 
below the 3.6% observed for conventional toner. The EA toners 
had a lower fraction of un-detachable toners, not a lower mean 
detachment field. At a Q/M of 57 μC/g the EA spheres detachment 
field distribution had a significantly higher mean detachment field 
but a narrower width, indicating that a closed loop controller that 
varied the Q/M (tribocharge) could be used to minimize the mean 
detachment field. Closed-loop control schemes like this are 
described in detail in a recent patent application [1]. 

Table 1 Toner properties 

 

 

 
Figure 4 toner comparisons from measurements 

3. Results from simulations 
In order to improve our understanding of how toner properties 

impact the detachment field distributions, we have conducted 
Monte-Carlo simulations based in the Feng-Hays adhesion model 
shown in equation (1). The detachment field and maximum applied 
force, which are illustrated in figure, are given by the following 
expressions derived from equation (1):  
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The detachment field is only meaningful when FMAX, the peak 
FTONER (eq. (1)), satisfies FMAX  > 0. When this rule is violated, 
FTONER is < 0 at all applied fields and the toner is therefore 
considered “un-detachable”.  As is illustrated in Figure 2, most of 
the measured residual mass observed at the nominal transfer field 
of 60 V/μm for conventional toner is due to un-detachable toner 
that cannot be removed even at the highest applied fields.  

In the first set of simulations an attempt was made to 
reproduce the detachment field distribution for conventional toner 
observed in figure 2. At best we would expect qualitative 
agreement with the data due to limitations in the model. These 
limitations include the assumption of isolated non-interacting toner 
particles (no dependence of the force on area coverage, etc.), a 
conducting (as opposed to dielectric) photoreceptor surface, toner 
surface charge confined to the polar caps of a spherical toner 
particle, no toner charge modification within the nip, etc. A full 
accounting of the limitations is beyond the scope of this paper, but 
keep in mind that despite the imperfections in the model we can 
still reasonably expect to gain insight into how basic toner 
properties impact the detachment field distributions. 

The input factors used in the conventional toner simulation 
are summarized in table 2 (compare to table 1). They include: (1)  
FNE [nN] , the non-electrostatic contribution to adhesion (van der 
Waals, etc.), (2) R [μm], the radius of the toner, (3) Q/D [fC/μm], 
the charge to toner diameter ratio (D=2*R), and (4) the surface 
charge uniformity parameterized as θ , which defines the polar half 
cap angle containing the charge. In order to better understand θ, 
consider figure 5. A uniformly charged toner particle corresponds 
to θ = 90, and a highly non-uniformly charged particle may, for 
example, have θ <=20, with all of the toner Q concentrated near 
the “north” and “south” poles. Note that Q, the total toner charge, 
is given by Q = (Q/D)*D.  

The means and standard deviations of the distributions of 
input parameters are shown in Table 2. The Q/D and R 
distributions were determined from charge spectrographs and tribo 
(Q/M) measurements. The charge spectrographs were measured 
from toner developed to the photoconductor. See table 3 for a 
conversion of Q/D to tribo. The actual R distribution had a long, 
large-particle tail that was not adequately captured by a normal 
distribution, but for simplicity we decided to use a Gaussian 
distribution anyway. The choice of the 1 um standard deviation 
was based estimated from the measured distribution.  

Neither the charge uniformity (θ) nor the magnitude of the 
non-electrostatic adhesion (FNE) was known for the conventional 
toner. Therefore both parameters were varied in the simulations to 
find a combination of FNE and θ that reproduced the 
experimentally determined mean detachment field of ~26 V/μm 
and roughly reproduced the observed fraction of un-detachable 
toner. The parameters chosen for the simulation gave reasonable 
values for the magnitudes of FNE and θ [4]. Note that Feng and 
Hays [2-4] only calculated α, β, and γ  for three special cases: θ = 
10, 20, and 90. Curve fitting was used determine α, β, and γ  as a 
function of θ for 10o < θ < 90o. 

The simulated detachment field distribution for conventional  
toner with a nominal Q/D ~ -0.9 fC/μm is illustrated in figure 6. A 
comparison to the measured distribution in figure 2 shows 
remarkable agreement considering the limitations of the model. 
 
 

Table 2 Input parameters for conventional toner simulation. The 
first parameter is the mean, the second is the standard 
deviation. 

 
 

 
Figure 5  Toner surface charge uniformity parameter, θ , used in the 
simulations 

The median detachment field in the simulation is 24 V/μm, 
which is in close agreement with the measured distribution (PDF in 
figure 6). The fraction of undetachable toners, however, is 19.5% 
in the simulation but only 3.6% in the experiments. In the 
simulation 2.6% of the toner detaches at fields greater than the 
nominal peak transfer field of 60 V/μm, compared to ~ 0% for the 
measurements. Therefore the overall residual at 60V/μm in the 
simulation is 22.1% (=19.5% + 2.6%) which is considerably higher 
than the 3.6% observed experimentally. The discrepancy may be 
due to the fact that the experiments were conducted with a DMA of 
~ 0.5 mg/cm2, which corresponds to over a monolayer of toner, 
whereas the simulations are only valid in the low area coverage 
 

 
 
Figure 6  simulated detachment field distribution for conventional toner 
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limit of isolated non-interacting toner particles. The RMA at low 
DMA is closer to 70% according to unpublished data [5]. 

A Design of Experiments (DOE) approach utilizing a 4-factor 
3-level Central Composite Design (CCD) was conducted to 
determine the impact of the control factors (table 2) on various 
aspects of the detachment field distribution. The responses 
included the fraction of un-detachable toner, the fraction of toner 
that only detaches above the peak nominal field of 60 V/μm, the 
mean detachment field, and others. While a full discussion of the 
results is beyond the scope of this paper, the impact of toner 
charge, Q/D, is illustrated in figure 7 and table 3.  

The %RMA as a function of field is plotted in figure 7 as a 
function of Q/D for -1.3 <= Q/D <= -0.3 fC/μm (Tribo from ~ -12 
to -60 μC/g). The simulations (see table 2 for input parameters) 
show that the fraction of un-detachable toner is a particularly 
strong function of Q/D, whereas the mean detachment field is only 
weakly dependent on Q/D. At low toner charge (Q/D = -0.3), 
100% of the toner is un-detachable, whereas at a high toner charge 
of Q/D = -1.3, none (0%) of the toner is un-detachable, but the 
simulation does show that ~ 1% of the toner requires fields > 60 
V/μm to detach.  

The simulations indicate that the direction of the shift in the 
mean detachment field depends on how non-uniformly the toner is 
charged. For highly non-uniformly charged toner (θ<30) the mean 
detachment field tends to increase as magnitude of Q/D increases. 
The opposite trend shows up weakly in the simulations in figure 7 
for θ=30. It is interesting to note that the experimental mean 
detachment field of EA spherical toner increased as the toner Q/D 
became larger (see figure 4). Although this consistent with the 
conclusion that the EA spheres are non-uniformly charged (despite 
their highly spherical shape), the experimentally observed shift is 
probably due to limitations in the model we used to estimate the 
peak field. It is possible that we have overestimated the 
experimental peak transfer field in the nip, since negatively 
charged toner that has transferred to the image receiving member 
at lower fields will tend to repel the toner still on the 
photoreceptor. Since this magnitude effect is hard to estimate due 
to the close proximity of the surfaces in the transfer zone, we did 
not include it in our calculation. Therefore if this effect is 
significant, the more highly charged the toner, the higher the 
overestimate of the applied field. This may account for much of the 
experimentally observed shift.   

Table 3 the relationship between Q/D and tribo (Q/M )for a 6.2 
μm diameter toner particle with a density if 1.24 g/cm3. 

 
 

 

The high mean detachment field (>= 25 V/μm) observed for 
all of the toners is, however, strong evidence for highly non-
uniformly charged toner. Simulations indicate that uniformly 
charged toner should typically detach at lower fields than we 
observed experimentally. 

 
 
Figure 7 simulated fraction of residual toner as a function of toner charge Q/D 

4. Conclusions 
We have demonstrated that by measuring detachment field 

distributions, modeling adhesion forces, and simulating detachment 
field distributions based on those models, we can develop a much 
more detailed understanding of how key toner control factors 
impact detachment field distributions. This approach can be used 
to design toners and closed loop control schemes that could 
dramatically improve xerographic performance.  
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