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Abstract

Fabrication of 3D devices is often done by layer-wise printing
of inks and resins in conjunction with treatments such as photonic
curing and laser sintering. The nontreated material is typically
dissolved leaving the final 3D part. Such techniques are generally
limited to single materials and it can be difficult to build high
resolution, 3D structures over existing 3D surfaces. In this paper,
we demonstrate a novel, non-contact technique called Aerosol Jet®
printing. This technique creates a collimated jet of aerosol droplets
that extend 3-5 mm from the nozzle to the target. The deposited
features can be as small as 10 um and a wide assortment of
materials can be printed such as metal nano-particles, polymers,
adhesives, ceramics, and bio-active materials. The nozzle
direction and XYZ positioning is controlled by CAD/CAM sofiware
which allows conformal printing onto 2.5D substrates which have
a high level of surface topography as well as fully 3D surfaces.
For example, metallic traces can be printed onto 3D shapes such
as trenches and vias, as well as onto sidewalls and convex and
concave surfaces. We discuss the fabrication of a conformal phase
array antenna, embedded circuitry and sensors, and electronic
packaging.

Introduction

The desire to use additive manufacturing methods to produce
functional components is quickly growing in a variety of
industries. This is especially true in the electronics industry where
the demands of cost, size, and performance of electronic devices
are driving a need for more integrated electronic systems.
Particularly, interest in directly printing electronic components is
rapidly growing in the aerospace industry where the need to embed
sensors and communication devices within structural components
is becoming more important due to the improved performance and
weight of such systems [1]. Additionally, the mobile electronics
industry needs new processes to develop the next generation of
devices that provide a higher level of performance in a smaller
package. To fully realize these goals, a method to create fully
functional devices on non-conformal 3D structures is needed to
reduce the footprint, improve performance, as well as place the
electronic systems closer to where they are needed.

Many groups are trying to use 2D manufacturing techniques
to realize these goals. One example is printing on flexible
substrates and molding the substrates around a 3D surface [2,3].
There are, however, many limitations to these approaches such as
registration issues and limitations of the shape of the device.
Although these approaches may work on geometries such as
cylinders onto which a planer surface can be projected without
stretching, geometries such as hemispheres are difficult to
accommodate.

The Aerosol Jet® solution addresses the set of challenges that
hinder the innovation and development of truly 3D electrical
systems. Some of the challenges involved with this are printing on
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conformal and orthogonal surfaces with sharp angles between
planes, generating multi-layered circuitry without utilizing
common 2D approaches such as plating-masking-etching methods,
attaching discrete components such as microprocessors and sensors
on 3D structures and working with conformal surfaces such as
aircraft fuselages. This paper presents work that was performed to
address some of these industry challenges using Aerosol Jet®
printing technology.

Aerosol Jet Process

The Aerosol Jet® process is a direct-write method that uses
the aerodynamic focusing of aerosolized droplets to precisely
deposit functional materials onto a substrate. This approach begins
with aerosolizing a functional liquid into small droplets with
diameters between two and five microns. These droplets are then
passed through a deposition head where they are focused into a
collimated beam as small as 10 um in diameter or as large as 3
mm. The aerosol beam is emitted from the deposition head with a
velocity of approximately 80 m/s and travels ballistically to where
the droplets impact the substrate.

Dense Aerosol '

Sheath Gas Iy

Figure 1: Schematic diagram of Optomec’s aerosol-jet based printing
system. Liquid inks are first atomized to create a dense, aerosol cloud of 2-5
um sized droplets. A carrier gas transfers the aerosol to a printing head,
where a co-flowing sheath gas focuses the droplets to a 10-100 um diameter
Jet. The droplets impact on a computer controlled substrate to form printed
features.

Printed features are created by translating the deposition head
with respect to the substrate in XYZ and theta directions using a
CAD/CAM system. A distinct difference between the Aerosol
Jet® printing approach and other direct-write printing processes is
that it is a non-contact process that relies on acrodynamic jetting to
propel the droplets to the substrate. This enables a relatively large
standoff distant of approximately 2-5 mm between the deposition
head and the substrate and allows the deposition head to print in
any orientation including upwards. This eliminates the requirement
of a smooth, flat substrate and enables printing on most 3D
substrates. The Aerosol Jet® process is able to print inks with
viscosities up to 1000 cP and entrained solid particles up to 500 nm
in diameter. Typical formulations include nano-particle metal
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inks, functional organic materials, dielectrics, polymers, adhesives,
carbon nanotubes and biological materials.

Multi-Layer and Multi-Material Printing

While some functional devices can be produced by printing a
single layer of a single material, many applications require the
printing multiple layers of different materials to generate a
functional device or circuitry features [4]. It has been previously
reported that the Aerosol Jet® process is capable of generating
multilayered circuits [5]. Figure 2 shows a crossover circuit
consisting of conductive lines crossing over each other while still
electrically isolated by an intermediate layer of a dielectric
material. The first printed layer consists of a silver nano-particle
material produced by Cabot Inc. (CSD-66). Five parallel lines
were printed with a center-to-center pitch of 100 um. The silver
ink was thermally processed at 180 °C for 30 minutes. The second
printed layer consisted of a Imm x 1mm square pad of a PVDF
dielectric material that was dried at 100 °C for 10 minutes. The
final conductive layer was a PEDOT:PSS conductive polymer
which was printed over the PVDF. Electrical measurements were
taken after the sample was generated and the resistivity of both of
the conductive materials matched the vendors’ specifications. The
electrical isolation between the two conductive layers exceeded 10
GQ indicating good isolation. Although it is not shown in this
example, printed features such as this have been printed with
smaller feature sizes (<15 um wide) and processing conditions that
do not require the substrate to be removed from the printing
system. These conditions include laser sintering or hot air
sintering for the nano-particle metal ink and UV curing of the
dielectric materials. Interestingly, the conductor-dielectric-
conductor stack also forms the basis of printed parallel plate
capacitors.

separated by a PVDF dielectric.

Conformal Printing

Many advanced 3D applications such as those used in the
aerospace and mobile electronics industry require components
such as sensors, antennae, or interconnects to be printed onto or
embedded into conformal, non-planer surfaces or on three
orthogonal planer surfaces.

Non-Planer Surfaces

The importance of printing on non-planer or 2.5D surfaces
(surfaces which are substantially planar but have some curvature or
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topography) is quickly growing both on a large scale as well as a
micro scale. Large scale applications with dimensions of
millimeters to centimeters include embedding sensors or antennae
onto substrates such as aircraft fuselages or body armor for
military personal. Small (sub-millimeter) scale applications can
include applications such as IC chip packaging or high density
interconnects onto the large scale substrates described above.

An example of a large scale 2.5D application is the phased
array antenna shown in Figure 3. In this instance, a silver nano-
particle ink was printed onto a rigid curved substrate. After
processing the conductive ink, additional structural material is
laminated on the printed surface creating a fully functional, phase-
array antenna embedded in the structural component. This solution
is both low weight and mechanically robust. The process of

generating this component involved translating the deposition head
in the XYZ directions with the orientations of the deposition head
held normal to the platen of the printing system. No head rotation
was needed as the Aerosol Jet® process is capable of printing on
surfaces tilted by as much as 45° from the axis of the deposition
head.

Figure 3: Phased array antenna printed on a rigid, cylindrical surface.

Figure 4 shows a fully printed strain gauge on a curved
substrate produced with a FDM process. This part was generated
with a similar process to the antenna shown in Figure 3, but with
the width of the printed line maintained below 50um for improved
strain gauge performance.

Figure 4: Strain gauge printed on an elbow shield.

It is sometimes necessary to print on conformal surfaces on
the micron scale. Figure 5 is a cross-section micrograph showing
silver nanoparticle ink connections on staggered, multi-chip die
stacks. High aspect ratio interconnects with 30 um line width and
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greater than 10um line height have been demonstrated at sub-75
um pitches. Advanced electronic systems will require the printing
of micron-scale features over millimeter or centimeter scale 3D

topography.

Figure 5: Silver interconnects between staggered multichip stack.

Orthogonal Plane Printing

As electronic systems such as UAV’s become more
autonomous, they need to be more aware of their surroundings.
This has led to a need for sensors and communications devices to
be placed in three orthogonal dimensions to allow UAV’s to more
accurately sense their surroundings. In some cases such as
accelerometers, these types of devices can be created to operate in
3D at the IC level. In other situations such as light sensors, strain
gages, or directional antennae this is not possible. When a need for
3D functionality is restrained to 2D devices, they have traditionally
been produced in two dimensions using established technologies
and independently mounted onto a three dimensional structural
component. The resulting system can be larger than desired and
can introduce challenges such as connection of the devices
between planes. As size and weight factors become more
demanding, there is a growing desire to be able to create these
devices directly onto a three dimensional component.

Figure 6 illustrates the creation of a 3D sensor structure by
printing conductive wires from five sides of a 0.75” ceramic cube
down to a base substrate. 20 um lines of a silver nano-particle ink
were dispensed from a deposition head oriented at a 45° angle with
respect to the base. The print head was translated in the X-

Figure 6: Ceramic cube with conductive lines printed an five orthogonal
surfaces as well as the base.
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direction to print along the top surface then lowered in the Z-
direction to print down the side wall followed by a small
translation in the X-direction to print on the base. In this example,
the substrate was rotated to allow the print head to print on all four
sides of the cube. Full 6-axis motion systems are used for this type
of 3D work.

Electrically Connecting Discrete Components
Advanced 3D electrical systems typically require a variety of
discrete components including microprocessors, sensors, and
passive electrical components. These components are traditionally
connected to a circuit using processes such as reflow soldering,
which are well established for 2D applications. = However,
challenges can arise when used in 3D applications since reflow
techniques on vertical surfaces do not work well. Figure 7 shows
an example of mounting discrete components to a vertical substrate
and electrically connect them to the rest of the circuit. In this

example, an 0804 SMD device was first adhered to a substrate by a
high viscosity, UV/thermal cure epoxy between the two contact
pads on the substrate. The chip was placed between the contact
pads using a pick and place process where the surface tension of
the epoxy held the chip in place until it could be cured using a UV
light source. A subsequent thermal cure was performed on the
epoxy to enhance adhesion.

Figure 7: An 0603 device attached with epoxy and silver ink.

Electrical connection to the chip was performed by printing a
silver nano-particle ink over the edge of the chip, down the
sidewall, and onto the contact pad on the substrate. The deposition
head was orientated at a 45° angle with respect to the substrate to
ensure good coverage of the side wall. However, the standoff
distance of the deposition head from the substrate was not
changed. That is, the dispense tip was significantly closer to the
top of the 0603 package than to the substrate. This is possible due
to the large focal length of the collimated aerosol beam. To reduce
the contact resistance between the chip and the underling contact
pad, the print head was rastered back-and-forth over the chip ten
times to generate a 200 micron wide contact. The average contact
resistance between the chip and the pad was 100 mQ. The
capability to mount and electrically connect discrete components in
conjunction with printing interconnects and multi-layered features
are required to produce fully functional electronic systems.
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Conclusion

This work demonstrates some of the capabilities of the
Aerosol Jet® printing process to produce multi-layer, 3D electronic
circuits. It has been shown that the process is capable of printing
both large scale features such as phase-array antenna as well as 30
um- scale features as shown in 3D IC packaging onto 2.5D
conformal surfaces. In addition to conformal surfaces, patterning
electronic features onto orthogonal surfaces has also demonstrated.
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