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Abstract 
Measurements of crosstalk-induced dot placement errors 

were conducted with the Xaar1001 printhead printing in 3-phase 
mode using multiple different print patterns containing active 
pixels from nine neighboring channels on both sides of the 
monitored channel and including pixels from four earlier print 
cycles. The test data attributed a ‘crosstalk weight factor’ to each 
pixel proportional to its effect on the drop velocity of the 
monitored channel. The largest crosstalk effect was exerted by the 
nearest phase neighbor channels, and they reduced the drop 
velocity from the monitored channel. The ‘crosstalk weight 
factors’ of the other pixels was typically one order of magnitude 
smaller, and they were partially positive or negative, i.e. that they 
increase or decreased the drop velocity, respectively. The test 
results further proved that the total crosstalk effect of large print 
pattern as calculated by a linear superposition of the individual 
‘crosstalk weight factors’ of the active pixels was within 4% of the 
measured data . The evaluation of crosstalk was further supported 
by measurements of the meniscus motion within the nozzle in real 
time. This provided the possibility to measure the pressure 
variations within printing and non-printing channels, and thus 
enable to monitor the ‘pure’ effect of crosstalk from neighboring 
channels. 

Introduction 
Drop formation in DOD-printheads results from pressure 

waves within the ink channels. Drop velocity and volume change 
when neighboring channels are active as well, and the effect of 
such ‘crosstalk’ is visible e.g. as dot placement error. The ability to 
measure crosstalk effects quantitatively are the basis for the 
development of image manipulation and waveform optimization to 
compensate for crosstalk related dot placement errors. The present 
work describes two approaches to analyze crosstalk in a Xaar1001 
printhead. The first method uses precise measurement of dot 
placement errors from print outs and calculation of the quantitative 
effect of each individual pixel of a print pattern. The second 
method measures the motion of the meniscus in a nozzle in real 
time. While this method works at very low driving voltages below 
the threshold for drop ejection and was not used for quantitative 
predictions of drop velocity and dot placement it proved very 
useful in providing online data on relative pressure variations in 
the channel. It is thus useful for evaluating prototype actuators or 
fine tuning of driving waveforms.  

 

 

Crosstalk Analysis from Printed Pattern 
Cross-talk was measured in two different approaches. 

Quantitative data of drop velocity changes and dot placement 
errors was obtained by print tests. The tests were carried out on a 
drum printer with drum diameter of 100 mm and with a Renishaw 
encoder RESM20. The ink of choice was Magenta SunJet Crystal 
UFX and the Xaar1001 printhead was driven with a basic 
waveform for this particular ink. Throughout the reported tests the 
printhead was run at a its nominal maximum firing frequency of    
6 kHz, the nominal drop velocity of 6 m/s, and at a grey level of    
3 dpd. Print distance between the printhead and the paper surface 
was kept at 0.7 mm. A suitable coated paper (Epson glossy photo 
paper) was selected to produce well defined round dots that could 
be detected with high precision with a Mitutoyo Quick Vision ELF 
tool.  

In a first sequence of test runs the optimum substrate speed 
was evaluated that would give the highest measurement resolution 
of the crosstalk induced dot placement errors. The crosstalk effect 
on print quality can be quantified in different fashion, either by 
presenting the absolute dot placement error Δs or by the relative 
drop velocity change ΔvD/vD. Since the absolute dot placement 
error depends on the print distance it is more favorable to describe 
the crosstalk effect as the relative drop velocity change, which can 
be calculated from the dot placement error as in formula (1). 
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When plotting the absolute dot placement error versus the 
relative drop velocity change for different substrate speeds vS it is 
obvious from figure 1 that for a given accuracy in the 
measurement of dot placement the higher substrate speeds result in 
an improved resolution in the crosstalk effected relative drop 
velocity change. At too high substrate speeds, however, it was 
observed that dots did not show round shapes and that wind effects 
between the substrate and the printhead started to affect the 
measurement accuracy and the placement of drops, respectively. A 
substrate speed of 1.68 m/s, four times the standard substrate 
speeds, was therefore selected for the test runs. Analysis of the 
printouts indicated a measurement repeatability of dot placement 
of 1-sigma of +/- 2µm, which together with a required signal-to-
noise of 3:1 resulted in a measurement resolution of +/- 6 µm for 
the dot placement error. By way of formula 1 and depicted by 
figure 1 this enabled a resolution of the relative drop velocity 
change of 2.5%. 
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Figure 1: Relationship between the precision of dot placement measurements 
and the resulting resolution of the relative drop velocity changes. 

The print patterns for the measurement of the effect of 
crosstalk on dot placement were arranged as depicted in figure 2. 
A sequence of single dots was printed from the ink channel under 
investigation with intervals of typically 50 pixels. These dots 
served as reference dots and allowed to measure precisely the 
nominal distance between the pixels on the substrate without any 
crosstalk active. After several of these single dots a specific print 
pattern was printed, which comprised both the dot from the 
channel under investigation as well as the specific print pattern to 
be evaluated. These various print patterns investigated included 
either single dots from channels printed in the same print cycle as 
well as dots printed in previous print cycles. The crosstalk effect of 
the specific print patterns on the ink channel under investigation 
caused dot placement errors, which could be measured as the 
difference between the actual position of the dot from the channel 
under investigation and its nominal position as calculated from the 
reference dots. This type of print pattern was repeated across the 
printhead with approx. 50 channels interval, so that 9 identical 
patterns were printed across the 500 channels of a single actuator 
row of the Xaar1001 printhead. 

 

 
Figure 2: Reference dots (open dots) were printed with intervals of 50 pixels 
to allow calculating the nominal dot position of the monitored channel. The dot 
placement error due to the specific print pattern (grey dots) was measured as 
distance Δs between the actual position of the monitored dot (black dot) and 
its nominal position. 

For the present investigation of the crosstalk effect a total of 
59 different print patterns were designed using different 
combinations of a total of 33 different active pixels. Eight of these 
print patterns are shown in figure 3 comprising printing of 
individual and multiple dots within a print cycle in three phase 
mode with the corresponding crosstalk related dot placement 
errors on the right side of figure 3. Two prints per print pattern and 
per each of the nine monitored channels across the Xaar1001 
printhead were performed to allow for statistical analysis of the 
measurement data. Figure 3 demonstrates that the crosstalk effect 
of the two direct neighboring channels is minor as compared to the 
phase neighbors, and further that the crosstalk effect is linearly 
cumulative.  

 

 
 

Figure 3:   Several examples of test pattern on the left side. The black dot 
represents the monitored pixel while the open dots indicate pixels from 
neighboring channels printed in the same cycle.  

Since the drop formation in Xaar-type printheads is based on 
acoustics within the channel it was assumed that the crosstalk 
effects of the individual active channels can be linearly super-
positioned to yield the total crosstalk effect of each specific print 
pattern. With this assumption the crosstalk effect of each 
individual channel could be calculated from the set of dot 
placement errors of the different print pattern as 
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where p represents the individual pixel (1 of active, 0 if non-
active), and cw defines a ‘crosstalk weight factor’ representing the 
strength of the crosstalk effect of this particular pixel on the 
monitored channel, and i numbering all pixels of the print pattern 
under consideration. The reported test run with 59 different print 
patterns provided 59 linear independent equations to calculate the 
33 ‘crosstalk weight factors’. Solving this set of equations 
provided the results depicted in figure 4. Here only the pixels on 
one side of the monitored channels are shown since both sides 
were symmetric in performance. The accuracy of this procedure 
was tested to deliver calculated crosstalk related dot placement 
errors within 4% of the measured data. As mentioned above the 
crosstalk effect on dot placement was highest for the next phase 
neighbors, and as shown in figure 4 these phase neighbors affected 
a considerable reduction in drop velocity for the monitored 
channel. Some pixels that where printed in earlier cycles had 
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positive ‘crosstalk weight factors’ and therefore resulted in slightly 
increased drop velocity.  

 

 
 

Figure 4:  Calculated ‘crosstalk weight factors’ for 18 selected pixels from 
neighboring channels and within the same print cycle as well as three cycles 
prior to the monitored pixel. 

By way of identifying those crosstalk weight factors it is 
possible to calculate the effect of any arbitrary print pattern 
according to formula 2. Such quantitative knowledge of crosstalk 
effects can be used for software/waveform based methods to 
compensate crosstalk related dot placement errors either off-line or 
even on-line. 

 

Crosstalk Analysis by Meniscus Motion 
Another method to investigate crosstalk effects within a 

printhead monitors the motion of the ink meniscus as an indicator 
of pressure variations within the nozzle. At very low driving 
voltage to the printhead, i.e. way below the threshold for drop 
ejection, the displacement of the meniscus surface can be 
considered linearly proportional to the pressure in the nozzle. 
Working well below the threshold for drop ejection it is therefore 
possible to monitor the pressure in a nozzle both for non-active as 
well as for active channels, since the latter is not ‘obscured’ by a 
drop formation process. Figure 5a to 5c show examples for the 
temporal pressure profiles for three different cases, (a) an active 
channel printing an individual grayscale pixel without activating 
neighboring channels, (b) the same active channel printing the 
grayscale pixel while printing a certain grayscale print pattern with 
neighboring channels, and (c) the monitored channel being non-
active while printing the same print pattern of the neighboring 
channels as in case (b). The three figures can be evaluated to 
indeed show that the acoustic signals are additive, and that the 
difference of the signals in figures 5a and 5b indeed equal the 
curve in figure 5c. This proves that case (c) indeed provides the 
pure crosstalk effect of the neighboring channels on the monitored 
channel. The specific print pattern contained active phase neighbor 
channels and it is clearly visible that crosstalk results in a 
reduction of the pressure in the nozzle. This is in line with the 
observations from the print tests, which show a negative ‘crosstalk 
weight factor’ for the phase neighbor channels printing in the same 

cycle. It must be assumed that the requirement for sub-threshold 
operation does not allow predictions of e.g. drop velocity. 
However, the meniscus measurement provides a highly versatile 
method for online investigation of pressure effects in the channel, 
which is most useful for tests of prototype actuators or for 
waveform optimization. 

 
 

 
Figure 5 (a): Pressure at the nozzle for printing an isolated grayscale pixel 
only   

 
Figure 5 (b):  Pressure at the nozzle when printing a grayscale pixel with the 
monitored channel and printing a specific pattern with the neighboring 
channels. 

 
Figure 5(c):  Pressure at the nozzle of the non-active channel with the 
neighboring channels printing the same pattern as in figure 5 (b) 

Conclusions 
Measurements of crosstalk-induced dot placement errors were 

conducted with the Xaar1001 printhead printing in 3-phase mode. 
Careful design of the test equipment and choice of test parameters 
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allowed measuring the dot placement with high accuracy. A set of 
59 different test pattern were printed with up to nine neighboring 
channels on both sides of the monitored channel and including 
pixels from 4 earlier print cycles. The test data was evaluated in 
such a way that each individual pixel of the print pattern could be 
allocated a ‘crosstalk weight factor’ proportional to its effect on 
the drop velocity of the monitored channel. The largest crosstalk 
effect was exerted by the nearest phase neighbor channels, and 
they reduced the drop velocity from the monitored channel. The 
‘crosstalk weight factors’ of the other pixels was typically one 
order of magnitude smaller, and they were partially positive or 
negative, i.e. that they increase or decreased the drop velocity, 
respectively. The test results further proved that the total crosstalk 
effect of large print pattern, as calculated by a linear superposition 
of the individual ‘crosstalk weight factors’ of the active pixels, was 
within 4% of the measured data. This allows to calculate the 
expected crosstalk-induced drop velocity changes and the dot 
placement errors of any arbitrary print pattern, and thus opens up 
the possibility to employ software techniques for modification of 

the bitmaps or develop specific driving waveforms to compensate 
for crosstalk effects.  

The evaluation of crosstalk was further supported by 
measurements of the ink meniscus in the nozzle to monitor the 
meniscus motion and interpret pressure within the nozzle in real 
time. This provided the possibility to measure the pressure 
variations within printing and non-printing channels, and thus 
enable to monitor the ‘pure’ effect of crosstalk from neighboring 
channels. 
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