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Abstract 
The present work deals with the study of drop formation of 

polymeric fluids with the objective of providing a correlation 

between fluid printability and its rheological properties.  An 

innovative approach combining together many experiments and 

numerical simulations of free surface flows is proposed. 

Viscoelasticity of fluids is probed using experimental methods that 

give access to the frequency, strain and strain rate domains of the 

drop on demand jetting process.  High frequency viscoelastic 

measurements are performed using a Piezo Axial Vibrator (PAV) 

that enables linear viscoelastic measurements (LVE) to be 

obtained in the range 1Hz - 10 kHz.  Non linear viscoelastic 

(NLVE) measurements are performed using the “Cambridge 

Trimaster”, a filament stretching apparatus that enables nonlinear 

stretching and filament break up to be observed at strains similar 

to that found in DOD.  A series of low viscosity fluids possessing 

similar shear properties but differing by their elastic properties 

are used in this study. Polymer addition is found to develop fluid 

viscoelasticity and, in particular, an increase in the relaxation 

times at large strain extensional flows. Besides these different 

experiments, a numerical investigation of the stretching process is 

also performed with the development of a one-dimensional model 

coupled with the Arbitrary Lagrangian Eulerian (ALE) 

formulation. After preliminary comparison for the Newtonian 

case, the polymers solutions are modeled using FENE-CR 

constitutive equations. The predicted diameter of the middle of the 

thinning filament is compared against measurements obtained 

with the “Cambridge Trimaster” and a good agreement is found. 

The dynamics of drop formation and pinch-off of the above 

mentioned fluids are further investigated using pendant drop 

formation from a nozzle under the influence of gravity.  The same 

one-dimensional model, with parameters obtained from filament 

thinning, is used to model the faucet phenomenon. Transient 

lengths and diameters of filaments are compared with 

experimental measurements and demonstrate the close 

resemblance between the two processes although the filament 

stretching and thinning is more controllable and allows to have 

access to higher Hencky strains as compared to the pendant drop 

technique. The ability to model the fluids in two very different flow 

situations allow to predict their behavior in a drop on demand 

process and to propose an optimization of the printing process 

through the use of appropriate dimensionless numbers.  

Introduction  
For already some time now, ink-jet printing has been 

expanded into a versatile method for deposition of minute 

quantities of materials in various industrial manufacturing 

processes. As such, it is a key technology for controlled polymer 

deposition in relation to fabrication of multicolor polymer light 

emitting diode (pLED) displays and other polymer based 

electronic parts, ceramics, biopolymer arrays etc.
 

The polymeric 

additives profoundly influence fluid rheological properties hence 

leading to novel applications in industry. Several of these 

applications are based on the coil-stretch transition and subsequent 

stretching of polymer coils in elongational flows followed by an 

enhancement of elongational viscosity. Moreover, many fluids of 

interest to lab-on-a-chip devices are likely to exhibit complex 

micro-structure and non-Newtonian properties, such as 

viscoelasticity. In fact, given the small geometrical length scales, 

one expects these effects to be accentuated in micro-devices. 

Therefore the understanding of non-Newtonian rheological 

behavior such as elasticity is of both fundamental and practical 

importance [1].  

In this paper, we investigate the effects of polymer addition 

and concentration on fluid filament thinning and drop break-up in 

various situations. Elasticity effects are examined using dilute 

polymeric solutions. The results obtained for the polymeric fluids 

are compared to those for a viscous Newtonian fluid. The viscosity 

and modulii measurements in the linear viscoelastic regime are 

obtained using the Piezo Axial Vibrator device. The elongational 

properties in the non linear viscoelastic regime are first obtained 

using the “Cambridge Trimaster” device which stretches a small 

amount of fluid attached between two identical pistons. Filament 

thinning follows once the pistons are stopped. This apparatus has 

been especially designed to characterize low viscosity inkjet fluids 

where both the capillary thinning and break-up could be measured 

with time transients lower than a few milliseconds. As shown 

elsewhere [2], the elasto-capillary times are found to differ from 

those in the LVE regime by two orders of magnitude. The 

dynamics of drop formation and pinch-off are then investigated 

through filament rupture from a nozzle under the influence of 

gravity alone using the pendant drop technique. It is shown here 

that a one-dimensional (1D) model based on simplification of the 

governing 2D system through the use of the slender-jet 

approximation captures well the physics of filament thinning and 

drop formation even in situations of a finite flow rate where the 

relative importance of inertial to capillary force, on the dynamics is 

varied. It is demonstrated that the addition of polymer has a 

profound influence in retarding the break-up dynamics resulting in 

higher extensional viscosity and relaxation time and proving to be 

more effective in stabilizing the filament.  

The good agreement of the 1-D model with thinning and 

pendant drop measurements allows using it to predict the dynamics 

of filament formation and pinch-off in the case of DOD. As a 

conclusion of this study, a printability criterion is proposed taking 

into account non-Newtonian fluid dynamics. 

 

Experimental 
In this section, the fluids and the experimental methods used 

in this work are examined in some detail.  
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Fluids 
Solutions of polystyrene with molecular weight of 110 kg/mol 

(PS110) dissolved in mixtures of diethyl phthalate (DEP) and 

dioctyl phthalate (DOP) were prepared. The ratio between DEP 

and DOP was adjusted in order to match the fluids complex 

viscosity at a value of about 19mPa.s at 25°C. A mixture of PS110 

in DEP at higher concentration, namely 2.5wt%, is also 

formulated.  The fluid physical properties are summarized in Table 

1 with surface tension and density of the solutions estimated from 

weight ratio DEP/DOP. 

Fluid Mw 

(kg/kmol) 

DEP 

(w/w) 

c 

(wt%)    
ρρρρ    

(kg/m3) 

σσσσ    
(mN/m) 

ηηηη0 

(mPa.s) 

I  67 0 1076 35 19.6 

II 110000 72 0.2 1083 35 19 

III 110000 77 0.5 1089 36 20 

IV 110000 100 2.5 1120 37 27 

Table 1. Fluids physical parameters. 

Linear viscoelastic measurements 
The high frequency linear viscoelasticity (LVE) behavior of 

the fluids was investigated using a Piezo Axial Vibrator (PAV) [3]. 

The range of frequency of this device is well above that covered in 

DOD printing so the measurements are representative of operating 

conditions. The PAV gives the shear modulus, G* = G’ + iG”, and 

the complex viscosity η* = G*/iω (where ω is in rad/s). The 

temperature is regulated in the device and a range of temperatures 

situated between 5°C and 50°C can be investigated. It is to be 

noted that the elastic modulus G’ of fluid III is above that of fluid 

II whilst the loss modulus is more or less the same (Fig.1a). The 

complex viscosity is constant irrespective of frequency and is 

similar for all three fluids (Fig.1b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plots of (a) storage G’, loss modulus G” and (b) complex viscosity 

measured using PAV for fluids  II and III.  

Non-linear viscoelastic measurements 

Filament thinning 

The second experimental set up is a filament stretching, 

extensional rheometer, the “Cambridge Trimaster” [4]. This 

apparatus performs filament stretching at a constant velocity for a 

fluid initially placed between two pistons of initial diameter 

D0=1.2mm (Fig.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  “Cambridge Trimaster” filament stretching and breakup 

apparatus (a) schematic (b) photograph.  

 

Both pistons are attached on the opposite side of a belt and 

move symmetrically apart for a given distance allowing the mid-

filament to remain in a central position during the experiment. The 

pistons can be moved from a distance of 10µm to 10cm at a 

maximum relative velocity of 1m/s. When the pistons stop, the 

filament self-thins under the action of capillary and viscous forces. 

The Bond number was calculated to be small (Bo =  ρgD0
2/4σ = 

0.1), confirming that gravitation effects were negligible in 

comparison to capillary forces. 

A high speed camera (Photron Fastcam 1024 PCI ) was 

coupled with the “Cambridge Trimaster”, allowing the transient 

profiles to be recorded at a frame rate of 45000 frames per second 

at a resolution of 64x128 pixels, and with a shutter time as low as 

3µs. The filament thinning measurements as well as the filament 

break-up behavior were obtained using automatic image 

processing specifically developed for, and included within, the 

“Cambridge Trimaster” software package. This apparatus enables 

the measurement of the transient elongational viscosity and the 

observation of filament profiles. Both elements are relevant to 

inkjet drop and satellite formation. 

Pendant droplet 

A third set of experiments is related to pendant droplet 

measurements.  This method consists in forming a droplet at the 

end of a well sized tube (inner diameter of 150 µm and external 

diameter of 310µm) by slowly increasing the fluid volume using a 

syringe pump.  Initially, quasistatic equilibrium between surface 

tension and gravity maintains the droplet of radius R0 attached to 

the tube if ρgR0
2/3σ ≤ 1.  When droplet weight overcomes surface 

tension forces, gravity initiates the break-up and performs an axial 

 (b) (a) 
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stretch of the liquid located in the break-up region.  A cylinder of 

fluid is subsequently created and thins under the conjugated action 

of gravity and surface tension whereas viscoelastic forces acts 

against this mechanism (Fig. 3).  Similar imaging techniques as the 

one used for filament stretching and thinning experiments have 

proved to be useful to record the liquid faucet process with higher 

accuracy than previous measurement reported in the literature [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Sequence of images describing the pendant droplet experiment.  

 

Modeling 

Slender body approximation 
Filament stretching and pendant drop configurations have 

been extensively studied both experimentally and numerically. The 

modeling of these free-surface flows represents a complicated and 

computationally challenging task, thus the rationale of a simple 

model given in this paper to address the different cases. 

The radius of the filament h(z, t ) is assumed to vary slowly 

along the liquid jet and considering only the leading-order 

approximation in an expansion in the radius, the conservation of 

mass and momentum equation leads to the following nonlinear 

one-dimensional equations describing the filament dynamics [2, 6, 

7]: 

 

/ 2 = 0
t
h vh v h′ ′∂ + +                                 (1) 

2
2

2 2

( ) 1
= 3 ( ) ' Bo

t zz rr

v h
v vv Oh h

h h
κ σ σ

′ ′
′ ′  ∂ + − + + − +  (2) 

where the prime denotes the derivative with respect to z 

coordinates. 

The dimensionless form is deduced using R0, the radius of the 

capillary, as a characteristic length scale whilst the capillary time 

scale τ = (ρR3/σ )1/2 is used as the time scale. Thus the resulting 

drop dimensionless groups are the Ohnesorge number Oh=µ/(ρ 

R0σ)1/2 and the gravitational Bond number Bo =  ρgR0
2/σ. 

To avoid instability in the solution and gain the complete 

ability to represent a rounded drop, the full expression of the 

curvature given in equation (14) is taken [6].  This is not 

asymptotically correct as shown in [8] but this choice has been 

justified and used by many authors [6, 9].  The radial expansion 

requires replacing the mean curvature by the leading-order 

expression 1/h alone, but the applicability of the equations is 

improved by accounting for the full curvature, since the equations 

retrieve a spherical drop among the equilibrium solutions:  

 

 

(3) 

   

 

The extra-stress expression is deduced through the use of the 

non-Newtonian constitutive equation to be detailed later. 

To apply the previous equations special treatment of the 

boundary conditions has to be carried out in order to address both 

the filament thinning and the pendant drop configurations. The 

Arbitrary Lagrangian-Eulerian (ALE) technique was used to 

handle the dynamics of the boundaries with a moving grid where 

the new mesh coordinates are computed based on the motion of the 

boundaries of the structure.  The governing equations are solved 

using these moving coordinates.  The model, as presented here, has 

the additional advantage of not needing any un-physical artificial 

viscosity just for the purpose of pinning the fluid at the piston as 

required in [7] or any approximation to properly handle the 

pendant drop tip singularly. These boundary conditions using ALE 

techniques are detailed below. 

 
Stretching  

In the stretching configuration, no-slip conditions are 

imposed at the piston surfaces: 

 

0( / 2, ) ( / 2, )h z L t h z L t R= − = = =                     (4) 

( / 2, ) , ( / 2, )
p p

v z L t V v z L t V= − = − = =                 (5)  

where Vp is the stretching velocity applied to the pistons, and L the 

time-dependent filament length.   

                               
Pendant drop   

The way the drop tip is handled here is a characteristic of our 

one-dimensional ALE formulation and is in contrast to others 

reported in the literature, where either an undefined boundary 

condition is given or polynomial interpolations are made.  

Furthermore an extension accounting for non-Newtonian behavior 

is also given here. The previous equations (1-2) are subject to 

boundary conditions of the type plug flow.  

At the nozzle exit we have: 

 ( 0, ) 1h z t= =                                      (6)          

fUtzv == ),0(                                   (7) 

and the dimensionless inflow velocity Ua= Uf τ/R0=We1/2 where 

the Weber number, We=ρR0 Uf 
2/σ. 

The drop tip velocity corresponds to the time rate of change 

of the length L(t) of the drop through the ALE formulation, hence: 

( ( ), ) 0h z L t t= =                                             (8) 

( )
( ( ), )

dL t
v z L t t

dt
= =                                      (9) 

As the initial condition for the shape of the jet, we used a 

hemispherical droplet described by h(z, t=0)=(1-z2)1/2 . With these 

different ingredients a thorough quantitative evaluation of a 1-D 

model of drop formation from a pendant drop configuration based 

on the slender jet approximation can be carried out. This is done in 

the next section. 

310µm 
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Non-Newtonian Model: 1D FENE-CR 
Numerical simulations of non-Newtonian thinning filament 

and pendant drop configurations are carried out by solving the 

Navier-Stokes equations within the lubrication approximation as 

given by the equations (1)-(9). 

In order to establish the non-Newtonian 1-D model 

description, the previous equations are completed by expressing 

the extra-stresses zz rrσ σ−  due to the polymer. The FENE-CR 

constitutive equations are adopted in this work [10]. In this 

approach, the polymer contribution is described by a Finitely 

Extensible Nonlinear Elastic (FENE) dumbbell model which 

makes use of the conformation tensor A , and the stress tensor. 

For the one-dimensional model in dimensionless form, we obtain: 

 

( )( 1)
zz zz

Gf R Aσ = −% , ( )( 1)
rr rr

Gf R Aσ = −%     (10) 

tr( ) 2zz rrR A A= = +A                  (11)                                                       

                                

where /p eG Dν=% % , is the elastic modulus, and vp the polymer 

contribution to the viscosity and De=λ/τ, with λ the relaxation 

time. f(R) is the finite extensibility factor related to the finite 

extensibility parameter L , representing the ratio of a fully 

extended polymer (dumbbell) to its equilibrium length: 

2

1
( )

1 /
f R

R L
=

−
                              (12) 

 

L can be described in terms of molecular parameters, and is 

computed to be close to 15 for the polymer used in this study [2]. 

This latter value is adopted in the computations which have been 

performed. 

The evolution equations for the conformation tensor A may be 

written as follows:    

 

( ) ( )rr rr
rr

e e

A A f R v f R
v A

t z D z D

 ∂ ∂ ∂
+ + + = 

∂ ∂ ∂ 
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∂ ∂ ∂ 
       (14)                                 

 

Results and discussion 

Stretching: mid-filament diameter & transient 
profiles  

Filament stretching simulations of the non-Newtonian 

polymer solutions, given in Table 1, for a stretching distance of 

0.8mm (or aspect ratio Lf/R0=2.3), using the FENE-CR constitutive 

equations have been performed. The mid-filament evolution results 

from numerical simulations are compared against experimental 

measurements (Fig. 4 and Fig. 5).  Experimentally, the mid 

filament initially thins linearly with time after the piston cessation 

of motion indicating a viscous driven thinning mechanism [11, 

12]. For polymer solutions, a sudden change occurs within the 

mid-filament in the form of an exponential decay characteristic of 

an elasto-capillary driven thinning mechanism. However we 

observe that near breakup a difference exists between the 

experimental and numerical mid-filament evolution of the polymer 

solution (Fig. 5). This difference is translated by an under-swelling 

observable in the numerical simulations only. Such a discrepancy 

may be attributed to the FENE-CR single mode model which is 

unable to fully describe the thinning of ultra dilute polymer 

solution, especially at the latest stages before filament breakup. 

Nevertheless, it is to be noted that the model, although not fully 

satisfactory, retrieves quiet well the main feature of the transient 

profiles, as for example the nascent bead (Fig. 4b and Fig. 5b). It 

also renders very well the break-up time of both Newtonia5n and 

polymeric fluids as shown below in Figure 5.  

 

 

 

 

 

 

 

 

 

Figure 4. Photographs of transient profile of filament thinning and break up 

experiments for matched viscosity samples of (a) Fluid I, (b) Fluid II and (c) 

Fluid III.  Initial gap size: 0.6mm, final gap size: 1.4mm, pistons relative velocity: 

150mm/s.  Frame rate: 45000fps, shutter time of 3 µs. The reference time t = 0 

has been chosen to be the Newtonian break up time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Evolution of the mid-filament thinning diameter Dmid(t) as a function of 

time for Fluid I,  Fluid II and Fluid III. The insert highlights the discrepancy 

between the experimental and numerical mid-filament evolution. The left-hand 

figures shows the transient thinning profiles near breakup for fluids (a) I, (b) II, 

and (c) III, these figures are to be compared with those given above in Fig. 4. 

(a) 

(b) 

(c) 
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Pendant drop: transient profiles  
The numerical modeling of a pendant drop is carried out both 

with the Newtonian and polymer fluids. Although these solutions 

have the same zero shear viscosity, a substantial difference may be 

drawn between them in terms of dripping faucet. The sequence of 

images of pendant drops for the three different fluids is shown in 

Figure 6. It may be noted that the addition of minute quantities of 

polymer leads, as expected, to long lasting filaments connecting 

the main drop to the nozzle.  

 

 

 

 

 

 

 

 

 

 

Figure 6. Photographs of the pendant drop transient profiles for matched 

viscosity samples for (a) Fluid I, (b) fluid II and (c) Fluid III.  Frame rate: 

45000fps, shutter time of 3µs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Simulated pendant drop transient profile for Fluid I and close-up 

view. 

        

Such a behavior is retrieved by the numerical model where 

the transient profiles are in good agreement with the experimental 

ones. The Newtonian (Fluid I) case is particularly well predicted 

with the pinch-off point near the main drop (Fig. 7). In the 

polymer solution cases (Fluids II and III), we also observe a quite 

good prediction of the filament length (Fig. 8).   

To the best of our knowledge this is the first time that the 

pendant drop problem of non-Newtonian fluids is fully addressed 

using the one dimensional approach. This opens the way for 

sensitivity studies as the one performed in the following section 

since the numerical cost of such an approach could be one to two 

orders of magnitude smaller than the CPU time required by the 2D 

computations on the same machine.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Transient profile of the pendant drop in the case of non-Newtonian 

polymer solutions (a) Fluid II and (b) Fluid III.          

 

Printing behavior 

We investigate here the printing behavior of a DOD 

piezoelectric ink-jet printer in order to propose a printability 

criterion. It is used to carry out the ejection of drops formed with 

fluids I, II, and III (Fig.9).  It is well known that droplet formation 

is very much influenced by the system’s response to an applied 

pressure stimulus on the fluid. The printer used in the present 

study has a nozzle of 30 µm and the ejection pulse width is around 

8 µs. 

 

 

 

 

 

 

 

Figure 9. Drop formation for the different fluids described in table 1. 

It is shown that the fluids I and II may be ejected, although 

with different filament lengths, and that fluid III shows an 

anomalous “sticking” behavior. The drop begins to form but after 

some time is drawn back into the nozzle. This is probably related 

to the fact that a typical voltage wave form consists of a positive 

pulse (dwell time) generally followed by a negative pulse (echo 

time). The amplitude of the pulse and its duration is not sufficient 

to form fully the filament and eject the drop in the case of fluid III. 

(a) (b) 
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Figure 10. Simulated profiles and break-up lengths for the three different fluids 

described in Table 1. 

The numerical investigation performed with the 1D model 

reveals some interesting features (Fig.5). The comparisons between 

experiments and simulations are made relatively to the Newtonian 

fluid. In the case of the lower viscoelastic fluid (Fluid II) the 

break-up occurs at a time of 21 µs in very agreement with the 

results obtained experimentally. The simulations also give the 

length of the filament at break-up which is around 175 µm and 

only about 15 µm longer than that of the Newtonian fluid. The 

length of the filament the higher viscoelastic fluid (Fluid III) is 

much longer (230 µm) and most importantly break-up occurs much 

later with the break-up time being almost 2.5 times that of the 

Newtonian fluid. Any negative pulse sent to the transducer before 

break-up of the filament would probably tend to draw back the 

fluid to the nozzle which is indeed seen experimentally (Fig. 9). 

Numerical simulations taking into account the oscillatory nature of 

the flow with positive and negative pulses are currently underway 

and will be reported. 

 

 

 

 

 

 

 

 

Figure 11. Oh-De diagram with the boundaries of the printing domain (---). 

Fluids I, II, III and IV are on spotted on the figure. 

Figure 11 is a first step towards defining a printing domain in 

the case of viscoelastic fluids. Even if fluids I, II and III satisfy the 

double condition of 0.1<Oh<1 and of We=11 >1 [1, 13], the 

addition of polymer leads to a long lasting filament which hinders 

printing with fluid III. The viscoelastic character of the fluid is 

manifested through the Deborah number De. This work shows that 

this number should be smaller than 30 for the fluid to be printable 

without too many restrictions. Drop formation with fluid III is 

hindered because of the Deborah number being higher than 30 

whilst fluid IV suffers from two drawbacks with OhIV > 1 and DeIV 

almost 4 times the critical Deborah number. It has been shown 

experimentally that this fluid cannot be ejected. 

Conclusion                                           

In this paper experiments and numerical simulations are 

performed for filament thinning, pendant drop and DOD processes. 

A comparison between the first two configurations shows the same 

behavior which highlights the relevance of the stretching device 

for characterizing extensional flow and in particular DOD printing.  

In order to address these issues a 1D model based on a FENE-CR 

single mode constitutive equation has been developed and shown 

to represent fairly well the behavior of dilute viscoelastic polymer 

solutions in a number of free-surface flows and namely DOD 

printing. The versatility of this model is finally used to perform 

sensitivity studies and define a printing domain taking into account 

the Ohnesorge and Deborah numbers. As such, it paves the way for 

optimized printing with both Newtonian and non-Newtonian 

fluids. 
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