
 

Digital fabrication of a novel bio-actuator for bio-robotic art and 

design 

Peter Walters 
1, 2

, Ioannis Ieropoulos 
2
 and David McGoran 

1
.                                                                                                                              

1 
Centre for Fine Print Research, University of the West of England, Bristol, UK.                                                                                             

2 
Bristol Robotics Laboratory, Bristol, UK

Abstract 
We describe the design, fabrication and testing of a 

biologically-driven actuator which serves as a proof-or-concept 

“artificial heartbeat” for future use within bio-robotic art and 

design. The actuator employs live biological material, both as a 

source of power and means of actuation. Pneumatic pressure 

generated by the action of the yeast Saccharomyces cerevisiae 

causes a diaphragm to distend. Movement of the diaphragm is 

regulated by a purpose-built control valve. When the diaphragm is 

fully distended, the valve opens to release pressure, returning the 

actuator to its state of rest in readiness for the next actuation 

cycle. 

The control valve employs a temperature-responsive NiTi 

“artificial muscle” which is activated when heated electrically 

using power generated by microbial fuel cells.  In an alternative 

embodiment, the NiTi valve is powered by solar energy via 

photovoltaic panels. Results are presented showing the 

performance of devices powered by both energy sources.  

The structure of the bio-actuator is fabricated by 3D printing 

and rapid tooling techniques. 

Bio-actuation may be employed for such functions as shape-

change, pumping and propulsion. Possible applications for the 

physical principles described in this paper range from energy 

autonomous robotics and artificial life to artworks which 

creatively exploit robotic and bio-technology. 

Introduction 
There is a growing interest in interdisciplinary research that 

connects the arts and scientific communities. Creative 

collaboration between the complementary disciplines of art, 

design, science and engineering can often result in outcomes that 

are innovative and highly original. In this paper we present 

outcomes from an interdisciplinary collaboration between research 

specialists in art, design and robotics that set out to explore ways 

in which live biological materials might be exploited to bring 

about movement or shape changes in physical objects.  A result of 

our creative collaboration is a novel, biologically-driven actuator: 

an “artificial heartbeat”. This proof-of-concept device exploits live 

biological materials both as a source of electrical power and means 

of actuation, enabling it to exhibit a “pulsating” action which can 

be considered analogous to the heartbeat of a living organism. 

We begin by introducing the creative context for the project: 

the field of bio-robotic art and design. We will then introduce the 

key technologies which are exploited in the design of the bio-

actuator: microbial fuel cells, artificial muscle materials and 3D 

printing. Finally we will describe the design of the bio-actuator, 

and report results of experiments investigating its performance. 

Bio-robotic art and design 
Creative artists and designers are increasingly seeking to 

engage with developments in the scientific fields of bio-technology 

and robotics. 

For example, within his artistic practice, the performance 

artist Stelarc has worn a robotic “Third Hand” controlled by 

electrical signals from his abdominal and leg muscles. He has also 

had an “Extra Ear” surgically constructed on his forearm that 

includes an implanted microphone connected to the internet [1, 2]. 

The artist Arthur Elsenaar has developed a novel form of 

technological performance: “Artificial Facial Expression”, in 

which the muscles of the human face are controlled using purpose-

built electronic hardware and software. This allows the face to 

exhibit movements and expressions not normally possible, and also 

to be controlled from anywhere in the world via the internet [3]. 

Design researchers based at the Interaction Research Studio, 

Goldsmiths, University of London undertook a research project, 

“Material Beliefs”, which involved collaboration between 

designers and engineers working in fields of biomedical and 

cybernetic technologies. As part of the project, designers 

James Auger and Jimmy Loizeau created “Carnivorous Domestic 

Entertainment Robots” – speculative design proposals for a series 

of domestic robotic devices that could potentially be powered by 

microbial fuel cells, which generate electricity by breaking down 

and digesting organic material [4].  

The prototype bio-actuator described in the present paper is 

not intended to be a finished bio-robotic artwork or design 

product.  Rather it is our intention to demonstrate physical 

principles which may be exploited in future applications ranging 

from bio-robotic art and design to energy autonomous robotics and 

artificial life. We will now introduce the key technologies 

employed within the prototype bio-actuator. 

Microbial Fuel Cells 
Microbial Fuel Cells (MFCs) are bio-electrochemical 

transducers that convert bio-chemical energy directly into 

electricity, through the metabolic activity of live microorganisms 

(Figure 1). The origins of the technology date back to the 18th 

century and Luigi Galvani’s famous work on “animal electricity” 

[5]. Galvani demonstrated for the very first time that it is possible 

to get electrons to flow through biological matter by passing 

electrical current through frog legs. In 1911, Michael C. Potter 

demonstrated the very first MFC, working with Saccharomyces 

cerevisiae (baker’s yeast) or Escherichia coli [6]. The principle of 

operation of MFCs lies with the ability of live microbes to digest 

organic substrates inside an electrochemical cell. An MFC 

typically comprises two half-cells separated by an ion-selective 
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membrane.  In one half-cell, micro-organisms living in a liquid 

broth are fed an organic substrate. The metabolic activity of the 

microbes produces electrons which are transferred to the anode 

electrode. An external electric circuit allows the electrons to flow 

from the anode to the cathode.  At the anode, cations such as 

protons leak into the liquid and pass through the membrane to 

reach the cathode half-cell. At the cathode, the incoming electrons 

and protons react with an oxidising agent (ferricyanide, water or 

O2), to complete the reactions and close the circuit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Microbial fuel cell. 

Artificial Muscle Materials. 
Materials which exhibit movement or changes in shape when 

externally stimulated have been described as “artificial muscles”. 

Two classes of artificial muscle materials are shape memory alloys 

and electroactive polymers. Shape memory alloys are metallic 

alloys, typically composed of nickel and titanium.  Wires, fibres 

and helical springs formed from NiTi shape memory alloy 

materials can be stretched out of shape at room temperature, but 

when heated above the material’s transition temperature by the 

application of electric current, they will contract, generating 

significant force [7]. Electroactive polymer materials (EAPs) 

include dielectric elastomers and ionic polymer metal composites. 

Dielectric elastomers contract in thickness and expand in area with 

the application of a high voltage, whilst ionic polymer metal 

composites bend when stimulated by a relatively low voltage [8,9]. 

Researchers have demonstrated that electroactive polymer-

based artificial muscles can be powered by electrical energy from 

microbial fuel cells. In a previous study it has been shown that an 

EAP-based sphincter, stirrer and cilia-like mechanisms have been 

powered by the MFCs of the EcoBot series of energy-autonomous 

robots [10]. In [11] Bowers et al. demonstrate an EAP-based 

peristaltic pumping tube intended for future use in the fluid 

circulation system of the EcoBot. 

For the prototype bio-actuator described in this paper, we 

chose to use a NiTi fibre actuator (Biometal Fibre BMF100, Toki 

Corporation, Japan). This was because we found this type of 

contractile fibre actuator to be readily available and easy to 

incorporate into the bio-actuator design without the need for any 

special processing. In addition, the relatively low operating voltage 

(2.5 volts for 48 mm fibre length) meant it would be feasible to 

power the NiTi actuator with the electrical energy generated by 

MFCs and stored in a capacitor bank.   

3D printing. 
3D printing technologies enable physical objects to be 

fabricated directly from computer aided design data through the 

layer-by-layer deposition of material.  The 3D printing process 

employed in the fabrication of the bio-actuator is photopolymer 

jetting (Objet Geometries, Israel) in which a liquid photopolymer 

resin is deposited by inkjet printing and immediately cured by 

ultraviolet light [12]. 3D printing is employed to fabricate the rigid 

components of the bioactuator and also to make the moulds used to 

cast flexible components in silicone elastomer material. 

Bio-actuator design and characterisation. 
The design of the bio-actuator is illustrated in Figure 2. The 

bio-actuator comprises a pressure inlet, a diaphragm fabricated 

from soft silicone elastomer, a magnetic switch, a “smart” control 

valve incorporating a NiTi fibre actuator, and an outlet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Bio-actuator design. 

The sequence of operation is illustrated in Figure 4. 

Pnuematic pressure, generated by the metabolic action of live yeast 

Saccharomyces cerevisiae, enters the bio-actuator through the 

pressure inlet. This causes the diaphragm to distend. When the 

diaphragm is fully distended, the magnetic switch closes (Figure 4 

a). This allows electricity, generated by MFCs and stored in a 

capacitor bank, to flow through the NiTi fibre actuator, heating  it 

and causing it to contract, opening the valve. Pneumatic pressure is 

released through the outlet of the bioactuator (Figure 4 b). The 

magnetic switch remains closed long enough to allow the bio-

actuator to fully exhaust, returning the diaphragm to its state of rest 

in readiness for the next cycle of actuation. 
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Figure 3. Bio-actuator 3D printed working prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Bio-actuator sequence of operation. 

In order to characterise the physical performance of the bio-

actuator, two tests were carried out. The first test, a static test, 

investigated the relationship between the pressure inside the bio-

actuator and the deflection of the diaphragm. Pneumatic pressure 

was applied using air from a syringe. A digital manometer was 

used to measure the internal pressure within the bio-actuator, and a 

digital vernier gauge was used to measure the deflection of the 

diaphragm. The results of this test are shown in Figure 4. Readings 

of pressure and deflection were recorded up to a maximum 

pressure of 25 mBar, when the corresponding value for deflection 

of the diaphragm was approximately 6.5 mm (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pressure vs. diaphragm deflection. 

The second test was a dynamic test, in which pneumatic 

pressure was applied using a computer-controlled syringe driver, 

(flow rate of 210 ml/minute).  Pressure within the bio-actuator was 

recorded using a high-speed pressure transducer (sample rate 10 

milliseconds) attached to a data logger. Electrical power for the 

NiTi-actuated valve was provided by a bench power supply set to 

2.5 volts. Results for the dynamic pressure test are presented in 

Figure 6. which shows four consecutive actuation cycles. In each 

cycle, pneumatic pressure within the bio-actuator increases up to a 

maximum value (approximately 21 mBar), at which point the valve 

opens and pressure is released. Pressure drops to approximately 

0.5 mBar before the valve closes and the next actuation cycle 

begins. 

 

 

 

 

 

 

 

 

 

Figure 6. Pressure vs. time. 

Experiments in bio-actuation 
Experiments were carried out to investigate the feasibility of 

using live micro-organisms to generate the pneumatic pressure that 

is necessary for actuation, and to provide the electrical power that 

is required to operate the NiTi-actuated valve. 

The experimental set up is shown in Figure 7. Electrical 

energy generated by a stack of 48 small-scale (6.25 ml/unit) MFCs 

is stored in a bank of electrolytic capacitors, with a total 

capacitance of 0.408 Farad. The MFCs were inoculated with mixed 

cultures of micro-organisms that are commonly found in sludge 

and they were fed on neat wastewater (primary effluent supplied by 

Wessex Water). These MFCs form the power source of EcoBot-III 

and have been in operation for the last 4 years. A mixture of 7 g 

dried yeast Saccharomyces cerevisiae, approx. 8 g of sugar and 

200 ml water at 36 degrees Celsius is placed in a bioreactor vessel. 

Carbon dioxide gas generated by the metabolic action of the yeast 
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is collected in a balloon. When the MFC energy was accumulated 

to a threshold of 2.5 volts in the capacitor bank, and when the 

balloon has inflated, a valve is opened in order to allow the gas 

which has been collected in the balloon to flow through the bio-

actuator, causing it to operate. 

Results 
It took 55 minutes to charge the 0.408 Farad capacitor bank to 

2.5 volts. This was found to have provided enough electricity for 

12 consecutive actuations, after which the voltage of the capacitor 

bank had dropped to 1.55 volts. It then took 14 minutes and  30 

seconds to charge the capacitor bank back up to 2.5 volts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Bio-actuation experiment 

For the purposes of comparison, we also investigated the 

performance of a photovoltaic panel (Solarbotics Ltd SCC3766 

Monocrystalline solar cell, 37 x 66 mm) to generate the electrical 

energy that is required to power the NiTi fibre actuator.  Outdoors, 

on a moderately sunny day in June, it took 1 minute 22 seconds to 

charge the same capacitor bank up to 2.5 volts. 

It took 30 minutes for the yeast to inflate the balloon with 

carbon dioxide to approximately 85 mm diameter. This was found 

to provide enough gas pressure for more than 30 consecutive 

actuations. 

Discussion 
In this paper we have presented the design, fabrication and 

testing of a novel bio-actuator, which for the first time exploits the 

action of live micro-organisms, both as a source of electrical power 

and a means of actuation. The bio-actuator exhibits a self-

regulating, pulsating action which is in some ways analogous to 

the heartbeat of a living organism. 

The physical principles demonstrated by the bio-actuator may 

in the future be applied within the field of bio-robotic art and 

design. There is also potential for further development, leading to 

functional applications in energy autonomous robotics and 

unconventional computing. It is envisaged that within bio-robotic 

art and design, the bio-actuator could serve as an artificial 

heartbeat for a cyborg-like machine or biological automaton.  

Furthermore, in the case of energy autonomous robotics, the bio-

actuator could function as a biologically-driven diaphragm pump, 

for fluid circulation in an application such as the EcoBot. Finally, 

for the field of unconventional computing, the bio-actuator could 

potentially function as an oscillator or “clock” for biologically-

driven logic circuits. 
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