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Abstract
The printing quality delivered by a Drop-on-Demand (DoD)

inkjet printhead is mainly limited due to residual oscillations in
the ink channel. The maximal jetting frequency of a DoD inkjet
printhead can be increased by quickly damping the residual os-
cillations and by bringing in this way the ink-channel to rest after
jetting an ink drop. The inkjet channel model is generally sub-
jected to parametric uncertainty. This paper proposes a robust
optimization-based method to design the input actuation wave-
form for the piezo actuator in order to improve the damping of
the residual oscillations in the presence of parametric uncertain-
ties in the ink-channel model. Experimental results are presented
to show the efficacy of the proposed method.

Introduction
The ability of inkjet technology to deposit materials with di-

verse chemical and physical properties has made it an important
technology for both industry and home use. Apart from conven-
tional document printing, the inkjet technology has been success-
fully applied in the areas of electronics, mechanical engineering
and life sciences [13]. This is mainly thanks to the low oper-
ational costs of the technology. Typically, a drop-on-demand
(DoD) inkjet printhead consists of several ink channels in par-
allel. Each channel is provided with a piezo-actuator, which on
application of a voltage pulse can generate pressure oscillations
inside the ink channel. These pressure oscillations push the ink
drop out of the nozzle. A detailed description of the droplet jet-
ting process can be found in [11]. The print quality delivered by
an inkjet printhead depends on the properties of the jetted drop,
i.e., the drop velocity, the jetting direction and the drop volume.
To meet the challenging performance requirements posed by new
applications, these drop properties have to be tightly controlled.

The performance of the inkjet printhead is mainly limited
due to theresidual pressure oscillations. The actuation pulses
are designed to provide an ink drop of a specified volume and
velocity under the assumption that the ink channel is in steady
state. Once the ink drop is jetted, the pressure oscillations inside
the ink channel take several micro-seconds to decay. If the next
ink drop is jetted before the residual pressure oscillations settle,
the resulting drop properties will be different from the ones of
the previous drop. Therefore, at a high jetting frequency, drops
will be jetted before the oscillations in the ink channel have com-
pletely disappeared and these residual oscillations will influence
the drop velocity. This can degrade the printhead performance,
since a printhead has to jet drops with a constant velocity at dif-
ferent frequencies. Given this fact, an important characteristic is
the so-called DoD curve which represents the ink drop velocity as

a function of the jetting frequency (which is also called the DoD
frequency). Ideally, the DoD curve must be flat. However, for the
above reasons, this DoD curve is far from flat in practice. Our
goal in this paper is to flatten the DoD curve by redesigning the
piezo actuation pulse.

In the literature, we can find methods based on exhaustive
studies [1, 2, 10, 5, 4] and experimental analysis [9, 8] to design
the piezo actuation pulse. Unlike the previous approaches we will
tackle the operational issues of the DoD inkjet printhead with a
systems and control approach. This is a model-based approach
and we need a discrete-time modelH(q) relating the piezo input
voltage (i.e., the inputu) to the meniscus velocity (i.e., the output
y). The meniscus is an interface between the ink and air. We con-
sider this particular model since it is well known that the velocity
of the meniscus is a good measure of the pressure in the ink chan-
nel [3, 1]. Consequently, reducing the residual oscillations of the
meniscus velocity is equivalent to reducing the residual pressure
oscillations in the ink channel.

Mainly due to the limitations of the driving electronics, the
optimal input cannot be computed using a feedback controller, but
must be computed off-line based on the modelH(q) (feedforward
control). A feedforward controller using iterative learning algo-
rithm (ILC) is proposed in [11]. However, the main drawback of
the approach in [11] is that it is not possible to put a-priori con-
straints on the shape of the optimal pulse while such constraints
are generally present in practice. Indeed, the driving electron-
ics are generally only able to generate trapezoidal shapes for the
piezo actuation input. In our earlier work [6] we have presented an
optimization-based approach to deal with such shape constraints.
In [6] it is proposed to parameterize the class of piezo input sat-
isfying these shape constraints and to determine the optimal in-
put within this class using an optimization-based approach. The
possible inputs are parameterized asu(k,θ ) with θ a parameter
vector andk the discrete time index. Then a templateyref(k) is
designed for the desired meniscus velocity, i.e., a the meniscus
velocity profile with fast decaying residual oscillations. Based on
this templateyref(k) and the transfer functionH(q) an optimal ac-
tuation pulseu(t,θopt) is determined as the one minimizing the
norm of the tracking errore(k) = yref(k)−y(k). It is shown in [6]
that the optimal actuation pulseu(t,θopt) designed in this manner
using the nominal modelH(q) improves the performance of the
inkjet printhead compared to the standard trapezoidal actuation.
However, the DoD-curve with the optimal pulseu(t,θopt) is not
completely flat. Reason for this could be that the optimization-
based method [6] is a feedforward control strategy and hence, it
is highly sensitive to model mismatch.

Experimental investigation suggested that the dynamical
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model H(q) from the piezo input to the meniscus velocity ob-
tained at different DoD frequencies will not be the same. In [7],
we present a very compact uncertainty model∆ such that the un-
certain modelH(q,∆) encompasses the set of dynamical models
obtained at various operating DoD frequencies. One can think of
designing several optimal actuation pulses, one for every possi-
ble operating DoD frequency. In practice, this solution to make
the DoD curve flat is difficult to implement due to the hardware
limitations. These limitations demand a single actuation pulse
to be designed such that its performance is fairly good over the
operating range of the DoD frequencies. Therefore, we have ex-
tended the optimization-based approach to design a robust actu-
ation pulse. The robust actuation pulse can be obtained by mini-
mizing the sum of squared error with the uncertain inkjet system
H(q,∆). This paper summarizes the results in [6] and [7].

System description and modeling
Several analytic and numerical models are available for the

inkjet channel dynamics. For control applications, one prefers
a simple model with sufficient accuracy. Therefore, we select
a simplified discrete-time modelH(q) based on the ‘narrow-gap
model’ [12]. We know that higher-order modes in the meniscus
velocity do not contribute significantly to the drop formation pro-
cess [3]. Hence, these higher-order modes are neglected inH(q).
The discrete-time modelH(q) describes the dynamics from the
piezo input voltageu to the meniscus velocityy. The transfer
functionH(q) is given as follows

H(q) = g

(

q2 +b1q+b2

q2 +a1q+a2

)(

q2 +b3q+b4

q2 +a3q+a4

)

(1)

whereq is the forward shift operator. Figure 1 shows the fre-
quency response of the above fourth order transfer functionH(q)
with the solid blue line.

As discussed in the introduction, at different DoD frequen-
cies, the dynamics from the piezo input to the meniscus velocity
H(q) will be not be the same. This may be due to the unmodeled
refill dynamics or due to nonlinear effects in the drop formation
process. In order to investigate this phenomenon, we have used
experimental identification. It is very difficult to experimentally
measure the meniscus position and the meniscus velocity while
jetting an ink droplet. However, the piezoelectric crystal can be
simultaneously used as an actuator and as a sensor. Therefore,
we have identified a dynamical system from the piezo input to
the piezo-sensor output (which is proportional to the derivative
of the ink-channel pressure) at a fixed DoD frequency. We have
done several such experiments at various fixed DoD frequencies
in the operating range of the inkjet printhead. The details of the
identification experiments are omitted in this paper due to lack of
space.

It is observed that the first resonant mode of the inkjet sys-
tem varies a lot compared to the second resonant mode. Using
this information, it can be found that for the first resonant mode of
H(q), the resonance frequencyωn1 variation is approximately in
the interval[−7% +7%] and the dampingζn1 variation is approx-
imately in the interval[−70% +30%]. The variation in the sec-
ond resonant mode is relatively smaller compared to the first one.
Hence, in order to obtain a simpler and more compact uncertainty
description we assume that only the first resonant mode is uncer-

Figure 1. Frequency response of the transfer function model H(q)

tain. This is a valid assumption since the first mode greatly influ-
ences the ink drop properties [3] compared to the second mode.
The details on the mapping of the uncertainty on the properties of
the resonant mode to the coefficients of the transfer function (1)
can be found in [7]. Due to the uncertain first resonant mode, the
coefficients of the T.F. (1),a1 anda2 are subjected to uncertainty
∆. The uncertainty∆ = [∆(1) ∆(2)]T perturbs the coefficientsa1
anda2 in the following manner:

a1(∆) = a1,nom(1+∆(1)) (2)

a2(∆) = a2,nom(1+∆(2)), (3)

wherea1,nom anda2,nom are the nominal values of the coefficients
a1 anda2. This means that the uncertainty∆ on the coefficients
a1 anda2 lie in the setD given in the Figure 2. Now, the set of
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Figure 2. Parametric uncertainty in % of the nominal value

dynamical models obtained at various operating DoD frequencies
can be represented by the uncertain inkjet systemH(q,∆),∆ ∈D.
The frequency response of the uncertain inkjet system which is
represented byH(q,∆) is shown by yellow shaded area in Fig-
ure 1.

Feedforward control design
In [7], we have discussed in detail the limitations of the con-

trol system which restrict us to use feedforward strategy to control
the inkjet system. The driving electronics limit the range of the
actuation pulses that can be generated in practice. The only pos-
sible choice of the actuation pulse is the trapezoidal waveform.
Figure 3 shows the parametrization of the actuation pulse as pro-
posed in [7].
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Figure 3. Proposed piezo actuation pulse.

The actuation signalu(k,θ ) then consists of a positive trape-
zoidal pulse (called resonating pulse), which is responsible for
jetting the ink drop, followed by the negative trapezoidal pulse
(called the quenching pulse) which damps the residual oscilla-
tions. Now, the actuation pulse can be characterized by the rise
time (tr ), the dwell time (tw), the fall time (t f ) and the amplitude
(V) of both the resonating and the quenching pulse. The time
interval between the resonating pulse and the quenching pulse is
tdQ

. Thus, an actuation pulseu(k,θ ) is defined by the parameter
vectorθ = [trR twR t fR VR tdQ

trQ twQ t fQ VQ]T . As opposed to the
approaches in [8], the optimal parameter vector of the actuation
pulse can be determined using a systematic (optimization-based)
approach as shown in the sequel.

Control Objective
In order to define the optimization problem leading to the

optimal parameter vectorθopt, we need a templateyref(k) for the
desired meniscus velocity. In this section we describe the proce-
dure to construct the desired meniscus velocity trajectoryyre f (k)
using the transfer function modelH(q) and the standard pulse.

For the considered inkjet printhead, the standard pulse is
represented in Figure 4 and corresponds to a parameter vector
θstd= [1.5 2.5 1.5 25 0 0 0 0 0]T when using the parametriza-
tion in Figure 3. This standard pulse allows to jet one drop at
the desired velocity, but the residual oscillation generated by this
standard pulse perturbs the subsequent drops. Such a behavior can
be observed in Figure 4 (dashed line) where we represent the re-
sponse of the modelH(q) to the standard pulse. As shown in Fig-
ure 4, we can characterize the meniscus velocity responsey(k) in
two parts. Part A of the responsey(k) allows the drop to be jetted
at the desired drop velocity. A procedure is described in [3] to pre-
dict the properties of the jetted drop using Part A of the meniscus
velocity profile. Since we want to jet the ink drop at the desired
ink-drop velocity, the desired meniscus velocityyref(k) should be
the same asy(k) in Part A. Part B of the responsey(k) represents
the residual oscillations. This is an undesired behavior, since, the
residual oscillations perturb the subsequent drops. Therefore, in
Part B, we force the desired meniscus velocityyref(k) to zero. This
means fast decaying residual oscillations. This templateyre f (k)
is represented by the solid line in Figure 4.

Thus, the desired meniscus velocityyref(k) is a meniscus ve-
locity profile to jet an ink drop with the desired drop-velocity and
fast decaying residual oscillations. If the actuation pulse is de-
signed in such a way that the meniscus velocityy(k) follows the
reference trajectoryyref(k), then the channel will come to rest very
quickly after jetting the ink drop. This will create the condition to
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Figure 4. Reference meniscus velocity trajectory.

jet the ink drops at higher jetting frequencies.
Now, we present a brief summary of the optimization-based

method [6] to design the optimal actuation pulse using the nom-
inal modelH(q) of the inkjet system. In sequel we will present
extension of this method to design the robust pulse.

Optimal actuation pulse design
The optimal input is the trapezoidal inputu(k,θ ) which min-

imizes the difference between the reference trajectoryyref(k) and
the meniscus velocityy

(

k,u(k,θ )) = H(q)u(k,θ ). More pre-
cisely, we can define the objective function as the following sum
of square errors

Jopt(θ ) =
N

∑
k=0

(

yref(k)−H(q)u(k,θ )
)2

(4)

whereN = T
Ts

, Ts is sampling time,T is chosen equal to 100µs,
H(q) is the nominal discrete-time model from piezo input to the
meniscus velocity,q is here the forward shift operator andu(k,θ )
is the proposed actuation pulse parameterized by the parameter
vectorθ .

Thus, the optimal actuation pulse parameterθopt is the pa-
rameter vectorθ solving the following optimization problem

min
θ

Jopt(θ ), subject to θLB ≤ θ ≤ θUB, (5)

where,θLB andθUB are the vectors containing the lower and the
upper bounds on each element of the parameter vectorθ .

This is a nonlinear optimization problem and can be solved
offline using standard optimization algorithms. For this purpose,
we use gradient-based optimization algorithm of the MATLAB,
more specifically the functionfmincon. Gradient-based opti-
mization is an iterative method. The gradient ofJopt(θ ) is com-
puted numerically around the current value ofθ and then the pa-
rameterθ is updated in the gradient direction.

In the next section we will see this method helps to improve
the DoD-curve compared to the standard pulse, but does not com-
pletely faltten the DoD-curve. This could be because it uses only
the nominal modelH(q) for the actuation pulse design and does
not takes into account the multiple dynamical models at various
operating DoD frequencies. We will see later that the robustness
of the actuation pulse can be improved if we consider this set of
multiple dynamical modelsH(q,∆) for the actuation pulse design.
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Figure 5. Actuation pulses

Robust actuation pulse design
In the section of system description and modeling, we have

seen that the multiple models obtained at different DoD frequen-
cies can be represented byH(q,∆), i.e. the nominal inkjet model
with a compact polytopic uncertainty∆ ∈ D. In the design of the
optimal pulse, the performance index (4) for the actuation pulse is
defined as the sum of square of the tracking error for the nominal
modelH(q). Now, we have the set of multiple models represented
by the uncertain inkjet systemH(q,∆) which is perturbed by the
uncertainty∆ ∈ D. Therefore, we should design a robust actua-
tion pulse whose average performance is good over the polytopic
uncertaintyD, rather than obtaining an optimal actuation pulse
whose performance is only good for the nominal inkjet system
H(q). As the dimension of the parameter space of∆ is only 2, we
can easily grid the parametric uncertaintyD. Let the setS be the
grid on the parametric uncertaintyD, defined as

S = {∆i
, i = 1, ...,m, | ∆i ∈ D}

For a given parameter vectorθ , we define the robust performance
indexJrob(θ ) as the worst-case sum of squared error computed at
each of them grid elements, i.e.:

Jrob(θ ) = max
∆i∈S

N

∑
k=0

(

yref(k)−H(q,∆i )u(k,θ )
)2

. (6)

Now, the constrained robust actuation pulse parameter is thus the
solutionθrobustof the following optimization problem

min
θ

Jrob(θ ), subject to θLB ≤ θ ≤ θUB, (7)

where,θLB andθUB are the vectors containing the lower and the
upper bounds on each element of the parameter vectorθ .

This is a nonlinear optimization problem and can be solved
offline using standard optimization algorithms similar to the prob-
lem (5).

Experimental Results
In this section, we present experimental results to show the

improvements in the drop consistency with the optimal actuation
pulse and the robust actuation pulse. In order to obtain the optimal
actuation pulseuopt(k) = u(k,θopt) we have solved the nonlinear
optimization problem (5) using the commandfmincon from the
optimization toolbox of MATLAB. This optimal pulseuopt(k) is
shown in Figure 5 by the dashed red line. The experimental
setup is equipped with a CCD camera which can capture the im-
ages of jetted drops at an interval of 10µs. The details about the
experimental setup, such as the camera, the microscopic lens etc
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Figure 6. Experimental DoD curve with the standard pulse ustd(k).
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Figure 7. Experimental DoD curve with the optimal actuation pulse uopt(k).

can be found in [12]. In each experiment we have jetted 10 ink
drops from the inkjet channel at a fixed DoD frequency using the
standard pulseustd(k) and the optimal pulseuopt(k). These im-
ages are processed further to compute velocities of the jetted ink
drops. We have carried out several such experiments for different
DoD frequencies ranging from 20kHz to 70kHz with the step of
2kHz. The drop velocities of each of the 10 drops are shown in
Figures 6 and 7 as a function of the DoD frequency (DoD curve).
Figure 6 is obtained when the standard pulseustd(k) is used and
Figure 7 shows the results when the optimal pulseuopt(k) is used.
For the standard pulse, it can be seen that the maximum drop ve-
locity variation is 12ms−1 due to the undamped residual oscilla-
tions (see the DoD-curve in Figure 6). The optimal pulseuopt(k),
designed using the nominal inkjet modelH(q), consists of a neg-
ative trapezoidal pulse to damp the residual oscillations. Due to
this, the maximum drop velocity variation in the DoD-curve with
uopt(k) is reduced to 4.5ms−1.

We can see considerable improvement in the DoD-curve
with the optimal pulseuopt(k) compared to the standard pulse
ustd(k). However, the DoD-curve is not completely flat. This
is because the optimal pulse is designed using only the nominal
modelH(q) of the inkjet system, which is not the center of uncer-
tainty setD. Therefore, the performance of the optimal pulse will
be degraded when the dynamics is changed at different operating
DoD frequencies. Therefore, we design the robust pulse using the
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uncertain inkjet systemH(q,∆), which represents the set of dy-
namical models obtained at different operating DoD frequencies.
The nonlinear optimization problem (7) is solved by using the
commandfmincon from the optimization toolbox of MATLAB.
The robust pulse pulseurobust(k) = u(k,θrobust) designed in such a
manner is shown in Figure 5 by the solid blue line. We have done
similar experiments as mentioned earlier with the robust pulse and
we have obtained the DoD-curve, shown in Figure 8. Since the
robust pulse is designed to give a good average performance over
the set of the dynamical models represented byH(q,∆) it deliv-
ers better results than the optimal pulse. Now, the drop velocity
variation is even less than 2ms−1 (see the DoD-curve in Figure 8).

The overall improvement in the velocity consistency
achieved using the optimal pulse and the robust pulse has far-
reaching consequences for the print quality. This is because of
the proximity of the inkjet printhead to the printing paper.

Conclusion
The proposed feedforward control law is an extension of the

optimization-based method, which can provide best results if the
actual system dynamics does not deviate from the model used
in the design. We have observed that the inkjet system dynam-
ics at different DoD frequencies will not be the same. There-
fore, we have proposed represent this set of dynamical models by
a compact parametric uncertainty∆ ∈ D on the nominal model
of the inkjet system, i.e.H(q,∆). In order to damp the resid-
ual oscillations in the presence of this parametric uncertainty,
the optimization-based is extended to design the robust actua-
tion pulse which minimizes the worst-case squared tracking error.
Experimental results have demonstrated that a considerable im-
provement in the ink drop consistency can be achieved with the
proposed robust pulse. Applications of the proposed method to
multi-channel control will be investigated in the future.
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