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Abstract

The state of the ink film at and near the nozzles of a drop-on-
demand (DoD) print head during jetting has a direct impact on
printing performance and reliability. We have developed high-
speed imaging apparatus and analytical techniques to investigate
the ink film dynamics on an industrial print head nozzle-plate in
real-time. In addition to a direct correlation between the jet
emergence velocity and drive voltage, drive-dependent variations
in the oscillation of the ink meniscus in adjacent nozzles were also
observed. Using a ray-tracing model to analyze the meniscus
shape, the meniscus oscillations for both printing and non-printing
nozzles were found to be complex and involve elements such as
pre-oscillation and high-order surface waves. The flooding of
non-firing nozzles, deliberately caused by the application of
maximum drive voltage to a neighboring nozzle, has been recorded
and analyzed dynamically. The build-up of fluid in an annulus
around the nozzle (flooding rate) has been characterized and
compared with models for the net ink flow through the nozzle.

Introduction

In a commercial drop-on-demand (DOD) inkjet print head, the ink
meniscus at nozzles is maintained by the manifold pressure, ink
surface tension, and ink-nozzle wetting force. The dynamic shape
and position of the ink meniscus play an important role in
optimizing the print head jetting performance. For example, the
stationary nozzle meniscus prior to jetting has been suggested to
contribute to the “first drop” variation commonly observed when a
nozzle is commanded to fire after an idle period [1]. In addition,
images of the nozzle plate taken during drop ejection have shown
evidence of significant ink meniscus movements in nozzles
adjacent to the firing one [2], suggesting a possibility of a cross-
talk effect. However, our earlier imaging equipment set-ups [3, 4]
are neither arranged properly to image the nozzles directly nor
have the necessary temporal resolution to capture meniscus
oscillations. Therefore, a new imaging arrangement using an ultra
high-speed video camera and long-duration, high-power flash has
been developed to study nozzle meniscus dynamics in real-time.

In addition to studying the nozzle meniscus dynamics, the imaging
apparatus has also been used to study nozzle plate flooding, a
phenomenon affecting printer reliability. Studies have been
published using particle-seeded ink on a print head nozzle plate to
study the flooding layer dynamics [S]. However, the very high
temporal and spatial resolutions of our apparatus allow us to
directly assess the dynamics of ink flow near the nozzle in real-
time. It is hoped that the results will help to optimize printing
parameters as well as improve ink formulations.
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Experimental setup

The imaging rig, shown in Figure 1, consists of a Shimadzu HPV-
1 ultra high-speed camera which is capable of capturing 102 full
resolution gray scale images (310 X 260 pixels) at 1,000,000 fps
with exposure time down to 0.25 ps. The illumination is provided
by an Adapt Electronics Photoflash system (CU-500) which
produces 2 ms duration, 500 J flashes. Due to the short recording
and flash durations, the print head firing, camera and flash triggers
are synchronized using a precision delay/pulse generator (Stanford
Research System DG535).

A Xaar XJ126/200 DOD print head (with wetting nozzle plate) is
mounted, on a motorized multi-axis positioning stage, with its
nozzle array vertically oriented and facing the camera and the
flash. The camera, fitted with a microscope lens (Navitar 12X
ultra zoom with Mitutoyo LWD objective) is angled 14 degrees
off-axis to the nozzles imaged. The flash, focused by a condenser,
illuminates the nozzles about 21 degrees off-axis from the opposite
direction. The arrangement is configured to maximize the
illumination reaching the camera lens within the space constraints.
A protective glass plate is placed between the print head and lens
to prevent printed ink from misting the optics. Standard Xaar
model fluid (XJ5007281), used as an ink analogue, has a contact
angle with the nozzle plate of ~ 10°.

To capture the firing of the nozzles, a command pulse is generated
from a pulse generator (TTi TGP110) which is fed to a PC-based
print head controller (Xaar XUSB) and the SRS delay generator.
The command pulse triggers printing of a pre-loaded bitmap which
fires three adjacent nozzles 5 to 20 times with frequencies up to 5
kHz. The SRS delay generator applies set delays based on the
print head cycle time and the flash rise time and produces two
precisely timed command pulses to trigger the flash and camera
separately. The images captured by the Shimadzu camera are in a
proprietary format which encapsulates timing information such as
frame rate and shutter speed. These raw images are converted to
either AVI format movies or individual TIFF files for further

analysis.
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Figure 1. Schematic of the imaging apparatus (PH and optics in plan view)
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Results

Nozzle meniscus behavior — firing nozzle

The main parameter used to control DOD drop velocity is the drive
amplitude. In a Xaar print head, the amplitude is controlled by
altering the “efficiency factor” or the EFF value. For the purpose
of optimizing the print head jetting performance in practice, the
EFF value is used to adjust the drop velocity in order to balance
the drop placement accuracy versus the number of satellites
produced.
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Figure 2. Meniscus dynamics of firing (center nozzle) and non-firing nozzles.
(Note: these images have been rotated clockwise for presentation purposes.)
The nozzle was jetting toward the direction of illumination and a reflection of
the jet appears in the opposite direction in the timed images relative to the
trigger.
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As expected, variation in the drive amplitude produces clear
variations in the firing nozzle meniscus behavior. As shown in
Figure 2, higher EFF value, or higher drive amplitude causes
greater meniscus oscillation prior to drop ejection. However, the
images reveal additional details about the meniscus motions that
were impossible to observe previously. It is apparent from the
images that the nozzle meniscus oscillates before it retracts back
into the nozzle channel during drop ejection, roughly 60 ps after
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the meniscus motion begins (see images for EFF = 0.7 and 1.0
where reflections on the meniscus inside the center nozzle are
momentarily visible at +18 ps). While imaging the retracting
meniscus within the nozzle channel remains difficult due to the
illumination limitation, the shape and position of the meniscus
when it is near the nozzle plane can be estimated by ray-tracing
and solid modeling, as shown in Figure 3.
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Figure 3. Reconstructing a nozzle meniscus by ray-tracing, showing that the
meniscus is not just dome-shaped but can be at times far more complicated.

Nozzle meniscus behavior — non-firing nozzle

As shown in Figure 2, the variations in EFF value affect not only
the firing, but the adjacent, non-firing nozzles as well. The
meniscus oscillations seen in the nozzles immediately adjacent to
either side of the firing nozzle show the same phenomena. This
behavior is expected as the adjacent nozzles in this particular print
head design share the same piezo actuator which also separates
their ink channels. A wall deflection that creates positive pressure
in one channel to eject a drop, therefore, will result in negative
pressure generation and consequent meniscus retraction in the
adjacent channel. However, the effect of a single firing nozzle can
be felt beyond the immediate neighboring nozzles. As shown in
Figure 4, the meniscus of the nozzle two places away from the
firing nozzle (left nozzle in the images) is also disturbed by the
firing pulse. As expected, the meniscus oscillation of the remote
nozzle is lagging in phase and is now closer to being in-phase with
that of the firing nozzle.

Close inspection of Figure 2 reveals visible fringe patterns near the
nozzles. As these patterns change over periods of jetting as well as
after wiping the nozzle plate, they are thought to be associated to
optical interference as a function of local ink layer thickness. The
fringes can be enhanced by illuminating with monochromatic light.
By adding a 530 nm filter in front of the Adapt flash,
monochromatic illumination can be approximated. As a result,
similar fringe patterns as observed in Figure 2 are greatly
enhanced in Figure 4. The local variation of the ink layer
thickness can be deduced from the fringe spacing [5], if a
reference thickness is known; otherwise, simply counting the
fringes encountered moving away from the nozzle exit (where the
film layer is pinned) can be used to explore this quantitatively. A
simple topographic map using the fringes as contour lines can be
constructed to depict the relative variation of ink layer thickness.
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Figure 4. Meniscus dynamics of the adjacent, non-firing nozzles. Fringe
patterns on the nozzle plate have been enhanced by filtering the illuminating
flash with a 5630 nm filter.

Based on this method, a 3-D model of the ink layer around the
nozzles is shown in Figure 5, showing how the ink layer thickness
grows as one moves further away along the direction perpendicular
to the row of nozzles.

Figure 5. Relative topographic map of the ink layer near nozzles, with ink
layer thickness not scaled to the nozzle diameter. The map is shown in color
on-line.
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Nozzle plate flooding

Flooding of a nozzle plate during continuous printing is a serious
reliability concern for DOD inkjet print head and printer
manufacturers. Floods typically arise after a period of continuous
printing when an ink layer gradually builds up on the nozzle plate
to a point where it begins to interfere with normal drop ejection.
Typical strategies addressing the flooding issue include scheduled
pauses during printing to allow recovery of the flooded ink layer
and regular nozzle plate wiping and cleaning. However, these
solutions interrupt the continuous printing cycle and hence reduce
the overall process efficiency. In addition, since the actual
dynamics of nozzle plate flooding is not well characterized, most
solutions are devised by trial-and-error only.

Using our high-speed imaging apparatus, the nozzle flooding can
now be monitored in real-time. One of the potential sources of
flooding identified, as shown in Figure 6, is the ink outflow from
the adjacent, non-firing nozzles when the highest possible drive
voltage, corresponding to maximum EFF values, are used for

jetting.
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Figure 6. Flooding of the adjacent nozzle when jetting with high drive
amplitude

In the relatively short printing duration (9 drops at 5 kHz), a pool
of excess ink is seen to grow around the adjacent non-firing
nozzle. The growth of this ink pool is cyclical and distinctively
linked to the firing of the individual drops, as shown in Figure 7.

115

100
M’J

£
3 85
)
7]
]
g P/‘/w
= 70
o o Drop jetted
.
Model fit
55
40 !
0 04 0.8 1.2 1.6 2

Time (ms)
Figure 7. The growth of flooding pool diameter of the adjacent nozzle

Figure 8. Spherical cap model of the flooded pool over a non-firing nozzle
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Figure 9. Annular ring model of the flooded pool over a non-firing nozzle

The growth in diameter of the ink pool does not appear to be
linear, but is likely to correspond to a constant volume growth rate
based on specific ink pool geometries. Over a single nozzle
meniscus oscillation cycle, the ink pool over the non-firing nozzle
will either resemble a spherical cap, as shown in Figure 8, with its
instantaneous volume estimated as:

y _£(2)3!2—3c0s9+c0s39) (1)
cap T30y

sin’ @

where D is the ink pool diameter and 6 is the equilibrium contact
angle, or an annular ring of fluid pinned at the nozzle, as shown in
Figure 9, with a volume of :
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where D; is the nozzle diameter. Given that § is measured to be
10° + 2° for the model fluid on the nozzle plate and assuming a
constant average flow into the ink pool, the volumetric flooding
rate can be determined from the fitted curve in Figure 7 to be ~ 42
pl/s (spherical cap model) and ~ 19 pl/s (annular ring model).
These estimated flooding rates are sensitive to the value of 6. For
example, a 20% variation in the value of 6 will either double or
halve the estimated flooding rates and such an effect will be
amplified if @ is significantly higher than 10°. However, these
predictions should still be wuseful as order-of-magnitude
approximations for this particular type of print head flooding
during printing.

Discussion and summary

The reconstruction of the nozzle meniscus by ray-tracing has
shown that the meniscus shapes are far more complex than the
simple concave or convex forms previously assumed. The ripple
form suggests that higher order oscillation modes exist during
meniscus motion. These higher order modes are likely to be
affected by ink surface tension (hence ink formulation) and nozzle
geometry. In addition, as the ejected drops appears to emerge
from the nozzle while the meniscus is deep within the channel, the
actual drop formation from the meniscus is likely to be similar to
the case depicted by the bottom image and model of Figure 3,
where a central peak is growing from a retracting annulus.
Verifying this behavior can be important to ongoing efforts [7] in
developing models for DOD drop and satellite formation.

Our observation has also revealed meniscus oscillations in the
neighboring, non-firing nozzles that are correlated to the meniscus

NIP 27 and Digital Fabrication 2011

motion and jetting of the firing nozzle. This potential issue is
particularly acute for print heads which are designed to fire their
nozzles in a grouped sequence. Specifically, in this design the
nozzles are tied into three groups which are fired sequentially
depending on the group firing order and bitmap demands.
Therefore, the meniscus oscillations caused by firing of other
nozzles can interact and adversely affect the jetting performance of
any individual nozzle in seemingly random fashion. Additional
study on the meniscus oscillations as a result of multiple nozzle
firings should be conducted to understand this interaction better.
Finally, the flooding of the adjacent, non-firing nozzles appears to
follow a constant volumetric flow rule based on either a spherical
cap or an annular ring ink pool model. Further work is continuing
to link this flow to the drive amplitude applied to eject ink drops.
If this can be verified, the volumetric outflow rate of a non-firing
nozzle can then be quantitatively correlated to the EFF value and
ultimately, drop velocity and volume. Such information can assist
in optimizing print head jetting parameters to address nozzle plate
flooding in practice.
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