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Abstract 
Results of recent experiments and numerical simulations are 

presented, which have been used to establish empirical rules for 
the dependence of drop speed on nozzle diameter and drive 
amplitude for Newtonian and non-Newtonian fluids printed with a 
range of different ink-jet print-head technologies.  

Experiments were carried out with Xaar, MicroFab and 
Spectra Dimatix print heads and with solutions of polystyrene in 
diethyl phthalate as model fluids.  These results are compared with 
predictions from recent numerical codes developed by 
collaborators in the University of Leeds, and from simple models 
for drop-on-demand fluid jetting resulting from physical laws. 

Introduction 
Drop-on-demand (DoD) ink-jet printing successes in a widening 
range of industrial applications have continued to spur efforts to 
provide manufacturers of print heads, ink-jet fluids and printing 
systems with working rules, as well as a deeper understanding of 
jetting processes [1], that can lead to improvements. As there are 
many contributing, and sometimes conflicting, factors in DoD 
printing, the approach taken in our Inkjet Research Centre [2] has 
been to use model fluids, jetted from single print heads, in order to 
build up a better picture of key features of the problems. Most of 
our results confirmed the expectations of industrial DoD 
practitioners, but new insights were gained from some of them [3]. 
DoD simulations have been performed using the numerical code 
developed by Harlen and Morrison at the University of Leeds, UK, 
for viscoelastic polymer additives to Newtonian solvents [4]. 

Empirical modeling of jetting speed 
In our previous studies [3] of DoD jetting we have reported that 
the jet tip position (s) and the speed (u) beyond the nozzle exit, at 
time t after emergence, can be well represented by simple 
empirical functions of the form 
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Here v is the target tip speed ignoring the slowing down term 
characterized by the constant a, the jet velocity at emergence from 
the nozzle exit is v0 and t0 is a characteristic timescale for the 
exponential decay of the tip speed towards to the target tip speed v. 
The deceleration a is 1000’s of times larger than gravity, and 
opposes it for conventionally oriented DoD print heads. For some 
fluids a can be neglected whilst for others their larger a values are 
associated with “bungees” that will never jet or produce drops [4].  

Simple Models 
For an incompressible inviscid liquid of density ρ flowing at an 
instantaneous volume flow rate Q through a nozzle exit of area A; 
the fluid speed is linked to the conservation of volume by: 

AQSpeed /=  (3) 
For a given DoD waveform shape applied to the nozzle to drive Q 
there will be an average value of Q that is proportional to the peak 
value; for example the average/peak is 2/π if the waveform is a 
half-sinusoid, 2/3 for parabolic (quadratic) and 1/2 for triangular. 
So the peak value of Q can represent the DoD waveform. It is well 
known that if the flow rate Q is too low or does not persist long 
enough then the surface tension σ acting at the nozzle exit will 
tend to prevent drops from either forming or leaving the nozzle 
region with a usable outwards speed. The existence of a finite 
threshold value is clearly inconsistent with equation (3). The drop 
that does form is typically as wide as the nozzle exit diameter 2R 
for DoD model fluids [5]: can simple models based on equation (3) 
ever incorporate such well-known physical behavior and features? 
Flowing viscous fluids have a radially-dependent velocity profile 
across the nozzle that alters the relationship between Q and fluid 
tip speed v (<< velocity of sound in fluid). Physical analysis [6] for 
fully developed viscous flow with an average speed U at Reynolds 
number Re = ρRU/η in a pipe of radius R due to a pressure 
difference p* across length L reveals two dimensionless groups: 
(p*A²/ρQ²), which contains the ratio Q/A of equation (3), and 
(L/RRe), which depends on viscosity. These may imply that 

η/1~U  (4) 
When comparing inkjet drop speed with the peak drive amplitude 
for different nozzle exit areas, viscous DoD drop speeds should 
retain behavior arising from volume conservation suitably 
modified by the viscous flow constraints. We can check this by 
performing experiments and using numerical simulations of the 
print head nozzle and the fluid jets; while real experiments require 
accurate assessments of nozzle sizes and may suffer from 
differences between nozzle drive couplings, simulations also need 
the nozzle shapes and sizes as inputs, will use a drive waveform 
that is not known and necessarily assume the rupture of real fluid 
threads takes place at a finite radial width (which influences the 
number of satellites formed by simulations). When a CIJ fluid is 
modeled [7] the formation of a liquid jet requires the creation of 
extra surface and hence introduces a surface energy penalty 
against the kinetic energy of the jet produced by the drive 
waveform. This energy penalty scales as surface tension times the 
area of the drop. For DoD, the viscosity of the fluid produces 
forces that depend on fluid shear rates across the size of the 
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droplet, but are often neglected as they are expected to be smallest 
for the slowest drops. The extra surface energy (constant k ~ 1) for 
the DoD drop diameter D reduces the kinetic energy of the main 
drop according to equation (5): 

2____ DkenergykineticInitialenergykineticFinal πσ−=  (5) 
Thus the threshold for drop production ignoring viscosity is given 
by an exact balance of the 2 terms on the RHS of equation (4). The 
initial kinetic energy (½mv0²) is that corresponding to the speed in 
equation (3) and the mass contained in the diameter D of the drop. 
Rearranging the balance for zero final drop speed requires 
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where the velocity vT is the Taylor retraction speed for a fluid 
ligament of diameter D, which we have discussed previously [5]: 

D
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The threshold value of drop speed produced by the drive 
waveform needs to exceed the Taylor retraction velocity for the 
fluid, which depends inversely on the (square root of) drop 
diameter D. The consequence of this physical threshold 
mechanism for outward release of drops with a finite speed is that 
the drop diameter for should be as large as possible: the nozzle 
diameter presents a likely largest drop diameter while producing 
slowly moving DoD drops. (Non-circular nozzles have been 
numerically designed to reduce (by ~ 20%) the drop volume [8], 
while far smaller drops can be generated using higher radial modes 
across the nozzle [1, 9].) So we have clearly established that the 
surface energy argument will result in DoD drops of comparable 
size to the nozzle diameter, and that there is a threshold value for 
the speed in equation (3), as given by equation (6) in terms of a 
known fluid parameter vT, from equation (7) with D set to the size 
of the nozzle diameter. Rearranging our various equations to 
include the threshold leads to the final model. This has modified 
the linear dependence of the speed in equation (3) to a behavior 
written in terms of v0 and the magnitude of the volume flow Q due 
to the waveform drive, for given fluid properties and nozzle Area: 
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Ignoring the dependence of the drop diameter on the volume flow 
Q fixes vT for a given nozzle Area: thus the curve of Final-Speed 
vs. the flow rate Q due to the drive waveform amplitude can be 
simply understood in terms of fluid properties and the nozzle Area.  
Although the speed curve is not linear, straight-line fits over a 
equally spaced range of points up to 4v0 above the threshold speed 
v0 lie within 10% of unit slope (no effects due to surface tension). 
This modeling implies that the final drop speed above threshold 
will increase approximately linearly with the average flow rate Q. 
As the relationship between Q and the drive amplitude is usually 
assumed to be linear, although the power losses determined for a 
piezoelectric actuator were quadratic in DoD drive amplitude [10], 
this means that the model predicts a linear rise of drop speed with 
drive amplitude above a threshold, where this threshold depends 
on the Taylor speed vT of equation (7) and hence inversely with the 
square root of the drop (nozzle) diameter D. The nozzle exit Area 
increases as the square of diameter, so the output speeds for the 
same fluid ejected from different nozzle diameters (but the same 
actuation coupling and channel dimensions) should have very 

similar increases with parameter Q/D² ~ drive amplitude/D², 
although the slopes and the threshold for each nozzle size will 
modified slightly by the D dependence of the Taylor speed term 
v0. 
Model predictions for nozzles jetting fluid with the physical 
properties of DEP (diethyl phthalate) are shown in Figure 1, 
assuming the drop diameter matches the nozzle diameter, and the 
flow rate in the nozzle is normalized by the drop threshold value. 
In this model the final drop speed climbs above this threshold 
towards that of the drop speed expected without surface tension. 

 
Figure 1: Predictions of speed for a “low” viscosity DoD fluid (DEP) jetting 
from a nozzle. An empirical fit extending well beyond the threshold is roughly 
linear. The “low” viscosity limit reaches typically ~ 0.020 Pa.s for fast DoD 
jetting [11]. 

Equation (8) at the drop production threshold for low-viscosity 
fluids from a nozzle, whereas equation (4) applies above the jetting 
threshold for viscous fluids flowing through the same nozzle, but 
the effects of viscosity η on the DoD drop speed outside the nozzle 
have been ignored so far. For DoD printing it is known that 
viscosity plays a key role [11], because the parameter ηR/σ is a 
controlling timescale for a fluid jet radius R to radially pinch off. 
In addition, the stretching of the ligament prior to break off causes 
the extensional viscosity ηE to be raised above the low shear value 
η0, to values 3 times greater (the Trouton ratio) for Newtonian 
fluids, and even 100’s of times higher for viscoelastic fluids [12]. 
One theoretical model of the effect of viscosity [13] predicts the 
drop speed is reduced by ηE/(ρL) where L is the short length of 
ligament at the time when the kinetic and surface energies first 
balance (after the maximum of the drive voltage, but before any 
stretching), assuming also that the velocity profile in the nozzle is 
parabolic. For fast jetted DEP, this model predicts that stretching 
ligaments will slow the drop by ~ 0.75-3 m/s for nozzle R = 40-10 
µm and assuming the value of the initial (unstretched) fluid length 
L ~ R. Our empirical finding for ~ 6 m/s jetting of PS+DEP fluids 
is that the DoD jet tip velocity changes by a factor of 2-3 after 
emergence, which is not inconsistent with predictions using this 
model [13]. Viscosity, in the simple drop formation picture 
represented by equation (4), should enter only indirectly through 
the velocity profile in the nozzle rather than directly in the energy 
balance [13]. The effects with intermediate velocity profiles 
(between pure viscous parabolic and inviscid plug flow) should lie 
between the limits from the model [13] for the long jets we see [3]. 
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Results of numerical simulations 
Newtonian fluids with similar Weber number but different 
viscosities typical of the range encountered in DoD printing were 
chosen for simulation: DEP (0.010 Pas) and DOP (0.050 Pas). We 
simulated MicroFab drop speed variation with nozzle exit diameter 
because this provided a link with some of our experimental data. 
Each MicroFab nozzle shape pre-measured [14] for the simulation. 
 

 
Figure 2: Results of our numerical simulations of various MicroFab nozzles. 
Final drop speed is plotted against the normalized drive, which is the 
simulation drive voltage setting divided by the square of the nozzle exit 
diameter. See text. 

Figure 2 shows results from the numerical simulations of various 
MicroFab nozzles. Final drop speed is shown (up to at least 6 m/s) 
to rise roughly linearly above a threshold value for the normalized 
drive, which is the simulation drive voltage setting (amplitude 
applied to a common waveform) divided by the square of the 
nozzle exit diameter. The results cluster around normalized drive 
thresholds which depend significantly on viscosity and therefore 
do not follow limits from CIJ [6]. (Our simulation results for 50µm 
nozzle were corrected for a ~ 10% shift of measured nozzle bore 
compared with other nozzles.) The values of the extrapolated drive 
threshold of DOP and DEP were found by other simulations to lie 
on a nearly linear curve above a low viscosity limit (not shown) 
that is determined by the fluid surface tension. The common 
waveform used throughout these sets of simulations was deduced 
from PIV measurements on an 80µm diameter nozzle reported by 
our group elsewhere at this conference [14]. Other waveform 
profiles, which were based on the applied voltage set by MicroFab 
JetDrive III controller, produced a similar pattern of speeds results 
near threshold against an appropriate drive voltage setting.  

Experiments 
Experiments were carried out with Xaar, MicroFab and Spectra 
Dimatix print heads and with dilute solutions of polystyrene (PS) 
in diethyl phthalate (DEP) as model fluids. Shadowgraph images 
of DoD jets and drops were obtained using several experimental 
set-ups in the Inkjet Research Centre, as appropriate to the print 
head technology used (Xaar, Spectra Dimatix or MicroFab), the 
light source type (20ns NanoLight, a Xenon flash, 2ms high power 
flash) and cameras used (Nikon D40, Prosilica CCD, Shimadzu 
HyperVision 1,000,000 fps). Some of the experimental set-ups are 

reported elsewhere [14, 15]. Images sequences showing evolution 
of jets into drops are later analysed in time (< 1µs) and calibrated 
(< 1 µm) to determine the drop (or the jet tip) velocity at a 
specified (1.0 mm) stand-off distance from the nozzle exit.  

Experimental Results 
Some representative fluid jetting speed data obtained from our 
ongoing collaborative studies using Xaar, Spectra Dimatix and 
MicroFab print heads are shown in Figures 3-5 respectively.  

 
Figure 3: Xaar XJ126-200 nozzle jetting dilute PS+DEP (polystyrene) fluids. 

Figure 3 shows jetting from a Xaar XJ126-200 (50 µm diameter) 
print head nozzle has very similar gradients of drop speed versus 
drive setting for some viscous PS+DEP fluids. The two exceptions 
correspond to long ligaments for 0.315% and 0.44% PS210+DEP 
fluids above the limits of jettability found previously [3]. 

 
Figure 4: Spectra Dimatix SX3 nozzle jetting PS+DEP fluids. The solvent 
DEP jetting speed between 3-12 m/s is close to linear above a threshold 
drive. The PS (polystyrene) additives of PS110,000 (0.2wt%) and (0.4wt%) 
and PS210,00 (0.01wt%), (0.02wt%) and (0.05wt%) jetted at 3 m/s and 6 m/s 
show similar gradients but an increased threshold voltage that depends on 
fluid viscosity. 

Figure 4 shows jetting from a Spectra Dimatix SX3 print head. 
Despite having a square 27µm nozzle exit diagonal, rather than 
circular nozzle exits like the other print heads used in the present 
study, the linear jetting speed regularity persists, with the threshold 
increasing as the added PS concentration raises the fluid viscosity. 
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Figure 5: MicroFab nozzle jetting viscoelastic fluids. The PS series, chosen to 
have similar linear viscoelasticity and viscosity, have similar jetting thresholds 
[12]; the solvent DEP has a somewhat lower jetting threshold. 

Figure 5 shows jetting speed curves obtained using a 30 µm 
diameter MicroFab nozzle for the comparison of jetting of 
viscoelastic fluid samples with measured rheology [15]. The DEP 
fluid and the PS+DEP series was jetted using a 30 µm diameter 
nozzle. There is a clear difference between the threshold values of 
drive/(diameter)² for the DEP and PS series, although both appear 
consistent with a similar gradient in the drop speed above the 
threshold. The PS110 (0.5%) fluid jets well with a raised viscosity 
relative to pure DEP, while the other PS fluids, prepared for 
similar linear elasticity to the PS110 (0.5%) fluid, are increasingly 
closer to their jettability limits due to effects of non-linear 
viscoelasticity [15], and so show even higher jetting thresholds. 

Comments 
We have demonstrated by a combination of experimental results, 
across different DoD nozzles and manufacturing technologies, and 
numerical simulations of fluid jetting, that some regularities in the 
jet speed should be expected and are predictable whenever nozzle 
diameters, fluid viscosities and drive amplitudes are changed. This 
knowledge could be helpful whenever such changes are necessary. 
The simulation results are consistent with measurements of drop 
speed measured with PS+DEP fluids that are weakly viscoelastic, 
i.e. non-Newtonian and dominated by their extra viscous content. 

Conclusions 
Some very simple guidelines, due to the fundamental fluid 
dynamics behavior of inviscid CIJ jets from nozzles, do not 
explain DoD jetting of fluid with higher viscosity. The general 
results for DoD jetting of Newtonian fluids with a given waveform 
is that the drop speed is linear in normalized drive (being the drive 
setting divided by the square of the exit diameter) above a 
threshold that is independent of the nozzle exit diameter but which 
does depend significantly on the viscosity of the fluid. For the 
viscosity range simulated, the drive thresholds for a given nozzle 
vary linearly viscosity above a low viscosity value determined by 
surface tension. Both this linear viscosity dependence and the 
normalization of Q by the exit area are consistent with a 
dimensional analysis for fully developed viscous flows in pipes, 
and should apply even better for the higher viscosity DoD fluids.  
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