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Abstract 

In any inkjet system, the ink goes through various physical 
and geometric constraints which influence the flow dynamics and 
finally the jetting characteristics. The dynamic flow behaviour in-
channel, through the nozzle and in flight during printing is vital to 
control print quality (drop ejection characteristic, reliability) and 
further advances in the capability of inkjet technology. 

This paper will discuss the flow behaviour at each stage of a 
drop-on-demand printhead.  The fluid dynamics of the ink on the 
millimetre scale within the printhead inlet is very different to that 
on the micron scale within the channel and nozzle. Although they 
are all in the laminar flow regime they are subject to very different 
shear rates. In a printhead, various system components (ink, 
heaters, pumps, actuator and nozzle) must be designed or 
configured to achieve target velocity, frequency, drop size, and 
reliability. Both simulation and experimental results on these 
topics will be discussed in this paper. 

Introduction 
A printhead can be broken down into a series of functional 

components, each of which performs a specific task in taking a 
static bulk fluid and converting it into dynamic micro-scale drops.  
An ink supply, whether a gravity-fed bottle or a sophisticated 
pumping system serves two principal purposes; to deliver ink to 
the printhead inlet and to control meniscus pressure.  From the 
inlet the manifold distributes ink to the channels, its optimised 
design ensuring that each channel is supplied with the same 
pressure and flow rate. The channels’ size defines the final drop 
volume while its geometry can define its operation mode and 
ultimately the sort of ink that can be used.  Activation of the 
channel walls dictates the type of drop that is ejected while the 
nozzle holds the ink in while not printing and controls the drop 
formation process while drops are ejected. 

From ink bottle to ink drop, the ink is subject to a wide range 
of dynamic and thermal perturbations. In this paper, 
Computational Fluid Dynamics (CFD) and drop ejection 
modelling code are used to model flow regimes within a typical 
printhead system at various stages through the ink path.  

Acoustic pressure pulse drop ejection  
The acoustic driving mechanism for drop ejection is discussed 

in more detail in previous papers, see for example [1]. Briefly, the 
active ink channel formed by the shared wall PZT structure is 
connected to a supply manifold providing a source of fluid to 
replenish that ejected from the nozzle. A secondary manifold is 
positioned at the other end of the active ink channel, to collect the 
through-flow ink and return the excess ink back to the ink supply 
reservoir. Using a larger cross section than necessary in the 
manifolds reduces through-flow fluid pressure drops, but also 
promotes an impedance mismatch between active channel and 

supply manifold to cause partial reflection of pressure waves.  
Ejection of droplets can therefore proceed due to coincidence of 
pressure pulses arriving at the nozzle entry from a multiple of 
operations of the actuating element.  

Acoustic operation is initiated by electrical activation of the 
PZT walls, causing the two longitudinal walls to move apart and to 
rapidly increase the volume of the active channel. The resulting 
rarefaction of the ink in the channels causes positive elastic waves 
to travel in from the two manifold regions, which superimpose at 
the nozzle point at the centre of the active channel.  Further 
pressure wave pulses that are caused by reflection at the two 
channel / manifold interfaces are actively used to control the drop 
ejection process. Actuators combining this longitudinal acoustic 
mode and low restriction through-flow ink supply are able to 
operate at frequencies in excess of 200 kHz (6pl drop) since the 
time of flight of the acoustic wave along the length of the channel 
is short. 

Flow regime changes within printhead 
The flow regimes are evaluated at a number of distinct 

regions within the ink flow cycle, namely in the main ink supply 
tubing, within an inlet manifold and within the acoustic firing 
channel itself.  

Fully developed laminar flow is achieved in the supply tubing 
linking the ink bottle to the printhead, assuming a total through-
flow volumetric flow rate of 150l/min. Xaar printheads typically 
subdivide this input supply using an inlet manifold that splits the 
flow input into a series of flow paths individually supplying 
addressable areas of printhead channel manifold. The goal for this 
inlet manifold, a representation of which is shown in Figure 1, is to 
supply a series of smaller bore branches with nominally equal 
throughputs of ink, to avoid ink starvation in high duty cycle 
channels and to ensure the minimum through-flow for cooling and 
cleaning of the actuator channel. 

Microfluidic design using commercial CFD code such as 
COMSOL Multiphysics is suitable for optimizing the flow channel 
geometry to equalize the flow characteristics across the printhead. 
In the initial realization of a manifold design shown in Figure 1, 
momentum derived from geometric characteristics that would not 
be predicted by a Bernoulli-based pipe network analysis are 
observed to promote increased velocity in the outlet ports nearest 
to the trajectory of the main inlet port.  

A first attempt at optimizing the flow geometry is presented 
in Figure 2, where variable flow cross-section and fillets are 
introduced to complement the fluid momentum characteristics. 
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Figure 1. Basic inlet manifold geometry, plotting CFD predicted flow velocity 
magnitude distribution. The top figure plots the whole geometry; the second 
figure zooms into the left hand end. The flow velocity magnitude varies 
between 0 and 0.1143m/s, represented by colour scaling. 

The relative improvement in flow equality across the inlet 
manifold’s outlet ports through the optimization is presented in 
Figure 3, which plots the maximum axial velocity along the ports. 
An ideal manifold would distribute fluid such that the axial 
velocity is equal across all outlet ports. The partially optimized 
manifold design results in a more equal distribution, although it is 
clear from this analysis that additional work is required to further 
improve the quality of this network component.  

Whilst the simulation work to this point has modeled flow 
regimes using stationary analysis, simulating the flow regime in a 
drop on demand inkjet channel requires transient analysis, as the 
acoustic pressure pulse causing the drop ejection is a transient 
effect.  
The channel consists of parallel-sided PZT walls that deflect along 
their length to cause a pressure wave that originates from a pair of 
manifolds at each end of the channel. To eject a 6pl drop from the 
nozzle design used in the Xaar actuator requires a nozzle inlet 
velocity field pulse period of approximately 7µs, consisting of an 
initial negative draw on the nozzle, followed by a large positive 
pulse used to eject the droplet, and a small amplitude negative 
pulse to pull the ligature back to the nozzle away from the droplet.  

The solver routine used in this work initially used a stationary 
solver to predict the steady state through-flow fluid flow, and a 
subsequent transient solver routine to model the time-varying flow 
field resulting from droplet output from the nozzle region. The 
method used to apply the time-varying velocity field in the nozzle 
region was to define the nozzle outlet as an outlet boundary with 
time varying volumetric flow rate, whose integrated magnitude 
matched the drop volume. 

 

 
Figure 2. Results for first optimization of inlet manifold geometry to improve 
fluid flow distribution. 

 
Figure 3. Normalised maximum axial velocity for 16 output ports, for first 
geometry design, subsequent partial optimization and the optimum desired 
flow velocity distribution. The optimisation procedure has achieved a more 
consistent flow pattern across the 16 channels, although further work is 
required to achieve higher correlation across all channels. 

The modelled velocity in the direction axially through the 
nozzle is plotted in Figure 4 for the temporal point coinciding with 
the peak nozzle ejection flow rate point, with a predicted 
maximum fluid velocity magnitude of 9.1m/s.  

Referring to Figure 5 which plots the time history of the 
boundary integrated outlet flow, an important result from this 
analysis is that a modeled drop ejection has a significant effect on 

Variable flow cross-section area 
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the stationary through-flow flow regime, with a short duration 
reverse flow in the down-stream end of the channel. The short time 
step used in the CFD resolved this unexpected result, whose 
implication is a high shear rate for the channel caused by the short 
duration transient. 
 

 

 

 

 

 

 

 

 
 
 
 
Figure 4. ‘Y’ axis velocity distribution in active ink channel, at the midpoint of 
the transient drop ejection pulse. 

 
Figure 5. Output axial flow velocity, measured at the output boundary.  
Integrating the flow through the boundary in the stationary context results in a 
steady state volumetric flow rate of 5x10-9m3/s. The axial flow velocity returns 
to the steady state value after a few µs (not shown) 

Fluidic parameters at various points in the 
supply  

Table 1 summarises the modelled results from the 
computational approaches used to model the ink supply system. 
The system is entirely laminar, with speeds in the main through-
flow regions typically less than 1m/s. During the ejection process, 
the transient flow speed in the main channel increased 
significantly, and the flow magnitude in the nozzle for a 6pl drop. 

The main pressure drop contribution occurs within the active 
channel, due to the constraints of the flow cross-section. Shear rate 
for the fluid increases dramatically in the active channel, which 
has profound implications on the ink rheology properties and 
jetting behavior [3-4]. A fluid under consideration for use in the 
printhead must be capable of maintaining performance under these 
wide variations of shear rates, and to sustain pressure fluctuation 
frequencies up to 200kHz with no degradation in properties. 

Table 1: Peak flow regime parameters evaluated at various 
points within ink supply system 

Region 
and flow 

area 

Flow 
area 
mm2 

Flow 
rate 

l/min 

Speed  
 

m/s 

Reynolds 
No 
- 

Shear 
rate  
1/s 

Ink tube 12.6 150 0.156 0.9 95 
Inlet 

manifold 31.5 150 0.109 1.4 120 

Channel 
(steady 
state) 

0.02 0.3 0.280 0.2 12157 

Nozzle 
(transient) 5x10-4 5x10-5 9.1 2.5 558770 

Jetting  
The simulation of drop formation and ejection was calculated 

using a drop-on-demand simulation tool developed by Morrison 
and Harlen [5]. The simulator sets up a two-dimensional grid 
within a region defined between a hemispherical boundary that 
caps the entrance to the nozzle and a curved (or flat) fluid-air 
interface at the nozzle exit.  A velocity profile is imposed 
perpendicular to the hemispherical boundary (Figure. 6) and, using 
full fluid dynamical equations, the displacement at each of the grid 
vertices is followed over time as the jet issuing from the nozzle 
evolves and breaks up into drops. 

 
Figure 6. Representation of velocity profile (a) imposed on hemispherical 
boundary which caps the nozzle inlet (b). 

The jetting behaviour of two types of fluid is briefly 
described.  The first is that for a Newtonian fluid and the second is 
that for a viscoelastic fluid.  For a Newtonian fluid the principal 
fluid parameters used are the density, viscosity and surface 
tension.  Typical values for an oil based ink were used.  For a 
viscoelastic fluid, the FENE (Finite Extensible Nonlinear Elastic) 
model was used and further parameters were incorporated to 
describe the fluid in terms of a suspension of dumbbell molecules.  
These parameters are the viscosity of the carrier solvent, the 
concentration of dumbbells (0.03 in dimensionless units), the 

Flow direction 
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dumbbell extensibility (10.0 in units of unstretched molecule 
length) and a relaxation time term (0.0001s). 

To start with both fluids appear to jet in a similar manner 
(step 1, in Figure 7).  As the jet extends the elasticity of the second 
fluid begin to dominate over its viscosity properties.  The ligature 
is now shorter compared to that of the purely Newtonian fluid 
(step 2).  The velocity of the jet is similarly lower for the 
viscoelastic fluid and a higher drive voltage in a printhead would 
be required for it to jet with the same velocity as the purely 
Newtonian fluid.  At a later time (step 3) the Newtonian fluid has 
detached into drops while the viscoelastic fluid is still connected 
by its ligature.  The distance and velocity of the drops at each of 
these time steps are indicated in Figures 8 and 9 respectively. 

 
 

(a)  

 

 

(b)  
Figure 7  Simulated jet evolution for (a) Newtonian and (b) viscoelastic fluids. 
Colour represent fluid velocity.  Time steps 1, 2 and 3 taken at 7.5µs, 25µs 
and 48µs respectively from the start of the velocity profile. 

 
Figure 8.  Distance from nozzle of the jets of Newtonian and viscoelasctic 
fluids when driven with the same velocity profile at the time intervals shown in 
Figure 7. 

 
Figure 9  Velocity of the jets of Newtonian and viscoelastic fluids when driven 
with the same velocity profile at the time intervals shown  in Figure 7. 

Conclusions 
The ink fluidic regimes of drop-on-demand printers are 

shown to vary widely as the ink is pumped through the system. 
The constituent component parts must be designed to promote 
efficient flow through the system, with minimal variation between 
adjacent supply channels to avoid ink starvation in high duty cycle 
regions of the printhead.  Computational approaches to 
microfluidic design using CFD has been shown to be powerful for 
optimising flow geometries, and for providing insight into the 
sensitivity of the flow regime to fluid parameters, volumetric flow 
rates and geometric features. 

The acoustic operation of Xaar’s printhead has been 
discussed, and the drop ejection procedure has an influence on the 
flow regime of the whole active ink channel.  
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