
Effects of Size on the Optical Properties of Organic 

Semiconductors: Copper (II) Phthalocyanine Nanoparticles  

M. M. AL-Amar, C. A. Burns  

Department of Physics, Western Michigan University 

Center for the Advancement of Printed Electronics 

Kalamazoo, MI 49009-5252 USA 

Abstract 
Organic materials are of great interest for use as electronic 

and optoelectronic devices. Currently, solar cells are in limited 

use, due to their relatively high cost.  Solar cells based on organic 

semiconductors are promising as low-cost alternatives to current 

technologies; for example, low cost printed solar cells may be 

possible. However, significant frequency ranges in the solar 

spectrum are not absorbed. Expanding the absorption-spectrum 

bandwidth for the organic materials by varying the band gap can 

lead to improved efficiency for solar cells based on organic 

semiconductor inks. Here we test the possibility of using 

nanoparticles with different sizes to increase the absorption 

efficiency.  

Copper Phthalocyanine (CuPc) nanoparticles have been 

prepared by a Liquid–Liquid Interface Recrystallization Technique 

(LLIRCT), and deposited on substrates using a dip-coater at room 

temperature. The size of the nanoparticles is measured by 

transmission electron microscopy (TEM). Particle size and 

morphology are mainly determined by the preparation time. 

Optical proprieties were measured using UV-VIS spectroscopy 

from 350 to 1000 nm. The spectra show a shift in the peak 

positions as the particles become smaller. The band gap increases 

with the particle size. 

Introduction 
Metal Phthalocyanines (MPcs) are organic semiconductor 

materials and well-known pigments.  These materials are low cost, 

chemically and thermally stable [1], and can easily form ordered 

thin films [2]. Important applications include gas sensors [3], 

photoconductivity, [4], solar cells [5] photonics and 

optoelectronics [6], organic light emitting diodes, (OLED) [7], and 

transistors [8]. CuPc is one of the most extensively studied 

materials in this class [9, 10].  

Since the properties of materials often change as their size 

approaches the nanoscale [11], it is valuable to study the structural, 

electronic and optical properties of metal Phthalocyanine (MPc) 

nanoparticles. Properties can depend on the substrate, the 

deposition technique, and the method of heat-treatment. 

Recently, a new method for the preparation of pure 

nanoparticles of CuPc was reported [12, 13]. The primary 

objective of this work is to study the size dependence of the optical 

absorption spectra of CuPc nanoparticles deposited by LLIRCT in 
the UV-VIS region.  

Experimental details 

Chemicals 
CuPc powder (purity level 95%) was purchased from Alfa 

Aesar and used without further purification. Other chemicals - 

liquid carbon tetrachloride (90% purity level) and potassium 

hydroxide (KOH purity level 85%) were used as purchased from 

Sigma-Aldrich. 

Synthesis of CuPc Nanoparticles 
CuPc nanoparticles synthesis was performed following the 

established LLIRCT [12, 13]. CuPc powder is insoluble in most 

organic and dilute inorganic solvents but is soluble in a mixture of 

Carbon tetrachloride (CCl4) and a strong alkali. This mixture of 

CCl4/alkali dissolves the CuPc and forms a homogeneous CuPc 

solution in CCl4/alkali as revealed by the color developed in the 

solution.  

The procedure of film formation is somewhat similar to the 

Langmuir–Blodgett technique. A solution of CuPc in CCl4/alkali 

was prepared as follows: 0.15g CuPc was dissolved in 20ml of 

CCl4 and 0.35g of potassium hydroxide (KOH).  The solution was 

sealed and stirred for one day at room temperature.  A small 

amount of this CuPc/ CCl4/KOH solution was spread (1 - 20 drops) 

on a water surface of area ~70 cm2. After the CCl4 evaporates, 

spontaneously self-assembly of CuPc occurs on the water surface 

leading to the formation of nanoparticles as CuPc is insoluble in 

dilute alkali solutions. The growth process occurs in two 

dimensions which leads to relatively uniform size particles.  

The as-formed film was transferred onto a microscope slide 

(1×1×0.25 cm) which had previously been cleaned by ethanol, and 

rinsed with distilled water. A NIMA D1L Dip-Coater was used to 

coat the slides as well as TEM grids. The film was created by 

immersing the substrate vertically in the solution at a constant rate 

of 0.5 cm/min and lifting it vertically at the same rate so that the 

film covers the dipped area (Blodgett technique). This operation 

was repeated multiple times to get the desired film thickness. We 

have processed films with 1, 5, 10, and 20 dips.  

The shapes and size of CuPc nanoparticles were analyzed 

using a JEOL Model JEM-1230 TEM. The film thickness and 

roughness were measured with a WYKO RST-Plus instrument that 

uses optical interference techniques to measure the thickness, and 

roughness. A UV-VIS scanning double beam spectrophotometer 

(Perkin-Elmer Lambda 20) in near normal incidence was used to 

record the absorption spectra from 300-1000 nm. 
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Results and discussion 

Transmission electron microscopy (TEM) 
We found that different size particles grew depending on the 

number of dips. The average size was calculated by randomly 

selecting and measuring 300 nanoparticles. For samples made with 

1, 5, 10, and 20 dips the average size was found to be 38, 43, 45, 

and 48 nm respectively.  Figure 1 a-d shows the TEM images and 

the histogram of the width as function of dips. The standard 

deviations of the width as function of dip are 16, 21, 18, and 19.  

The ratio of the length to width for CuPc nanoparticles is around 

2.5. One question that arises is how the number of dips can affect 

the size.  One likely possibility is that the time required instead of 

the number of dips is the important factor. The thickness of these 

samples 1, 5, 10, and 20 dips were measured and the average 

thicknesses are 3, 5.5, 7.5, and 7 µm, and the roughness Ra, which 

is the arithmetic average are 940, 626, 537, and 650 nm 

respectively. 

 

 
Figure 1 TEM images and the width distribution analysis for CuPc 

nanoparticles deposited at room temperature, (a) 1 dip (b) 5 dips (c) 10 dips 

(d) 20 dips (e) 0 min (f) 20 min (g) 80 min (h) 180 min. 

The dip-coater at typical speed of 0.5 cm/min takes about 40 

minutes to make 20 dips. The deposition period may allow the 

nanoparticles to grow to a larger size by combining together. To 

test this idea, four different nanoparticle samples were deposited 

on glass substrates using just a single dip after waiting 0, 20, 80, 

and 180 minutes after preparation. The average width sizes were 

43, 45 48, and 50 as the time was increased. For this experiment 

the same LLRCT sample was used.  Figure 1 e-h show the TEM 

images and histograms of CuPc nanoparticles deposited at different 

dip times. Standard deviations of the width as function of time are 

15, 18, 19, and 19. Figure 2 shows that the average width of the 

nanoparticles increases with the number of the dips or time. 

 
Figure 2 The average width of the CuPc nanoparticles as a function of time 

and dips.  

Optical spectra  
There are five known absorption bands for CuPc and most of 

metal Phthalocyanines (MPcs) Q, B, N, L, and C bands which are 

owing to π –π * and n–π * transitions. However, there are two 

strong absorption bands in the visible region for the CuPc [14-16]. 

The first band (Q-band) is in the range of 600–700 nm and is 

related π –π * transitions from the highest occupied molecular 

orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO) of the Phthalocyanine ring. The second band (B-band or 

soret band) is in the range of 300–450 nm, which is related to 

direct electronic transition from d–π * transitions that associated 

with the central metal atom [14-16]. 

We took measurements of the absorption spectra of CuPc 

nanoparticles deposited on glass substrates with the procedure 

described above. Figure 3 shows the absorption spectrum of CuPc 

nanoparticles for different size and the powder. The nanoparticles 

show optical absorption peaks near 400, 545, 630, and 735 nm. 

Data in the figure show shifts in the peak positions for both the B-

band and the Q-bands. To make this clear, we show the regions of 

the peaks in Figure 3 and give the data Table 1. The position and 

relative intensity of the peaks depends on the average size. The 

wavelength increases as the size increases. The instrumental 

uncertainty was determined by repeating the measurement on the 

sample several times also shown in Figure 3. 
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Figure 3 Optical absorption spectra and the change of wavelength for CuPc 

nanoparticles, Curves been normalized and offset by hand (a) Range 350-

1000 (b) Range 386-415 nm, and (c) Range 540-560 nm (d) Range 560-850 

nm. For b, c and d showed the instrumental uncertainty for each wavelength. 

The absorption coefficient (α) 
For an electron to leave the valence band and become a free 

electron in the conduction band, it needs to acquire energy equal to 

the energy gap. If the electron and hole remain bound they form an 

exciton and their binding energy reduces the energy that must be 

absorbed. While the binding energy of exciton is relatively small in 

classical semiconductors (~meV), it can be significantly larger in 

certain organic semiconductors (~eV).  

The bad gap can be measured by determining the absorption 

coefficient α from equation (1):  

 
)exp(0 tII α−=

 
(1) 

Here, I and I0 are the intensities of the incident and 

transmitted beam, and t is the thickness of the sample. The band 

gap of the CuPc nanoparticles in the wavelength range where the 

gap exists (380-420 nm) has been calculated using the equation 2. 
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Here, hv is the photon energy, Eg is the band gap energy, A 

and n are constants. For allowed direct transitions n = 1/2, 2 and 

for allowed indirect transitions n = 3/2 [17]. By far the best fit was 

obtained for n = 2.  The energy gap for the different size particles 

is determined by graphing the normalized (áhv)1/2 vs. (hv) data as 

shown in Figure 4. The linear nature of the plots indicates the 

band excitation is a direct transition. The band gap Eg is 

determined by extrapolating the straight portion of the plot to 

(áhv)1/2 =0 on the energy axis. Also Figure 4 shows the variation 

of the band gap energy with particle average width size. Table 1 

shows that the band gap increased from 3.02 to 3.1 ± 0.005 eV as 

the size decreased from 48 nm to 38 nm. As results the optical 

absorption shows a shift with increasing particle size, indicating a 

change in Eg  

Table 1 Variation of the positions of absorption peak, and the 

band gap Eg as a function of gain size 

Absorption Peak (nm) Average 
width 

Size (nm) 
± 1 ± 2 ±15 ± 4 

38 399 543 576 724 
43 399 544 628 743 

45 400 546 631 736 
48 403 553 625 737 

Powder 403 554 622 752 

Band Gap Eg (eV) 

Measurement Calculation 

3.1 3.020029 

3.09 3.020023 
3.06 3.020021 

3.05 3.020018 

3.02  

- 

 Figure 4 Plots of (αhv )
1/2

 vs. (hv) and the variation of the optical band gap 

(Eg) vs. different width size for CuPc nanoparticles  

Exciton energies will also change with particle size. The 

average distance between the electron and the hole is the exciton 
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Bohr radius. In bulk materials this radius is small compared to 

crystal dimensions. In a quantum dot or nanoparticles, the exciton 

Bohr radius can be the same order as the nanoparticles or even 

smaller, so exciton energy levels can be significantly altered. In a 

semiconductor the exciton Bohr radius (rB) is  
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Here n is the state number, m*
h and m*

e are the effective 

masses of holes and electrons, respectively, andε is the relative 

dielectric constant. For CuPc m*
e = 2.2 m0 [18], and m*

h =6.6 m0 

[19], where m0 is the standard electron mass, ε  is 3.4 [20]. 

Therefore, the Bohr radius for this exciton in CuPc is 0.11 nm.  In 

our case R >> rB where R is the average width size for CuPc 

nanoparticles. This is the regime of weak confinement and the 

Coulomb interactions term can be neglected [21]. 

The system can be analyzed [21, 22] based on the 

Schrödinger equation, with the electrons and holes described by 

the Hamiltonian: 
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Here kinetic and Coulomb energies are included. There is also 

a polarization term which can be ignored because it is small in 

comparison with the kinetic and Coulomb interactions [23]. As we 

point out above, this is the regime of weak confinement and the 

dominant energy is the Coulomb term. Therefore, the energy of the 

lowest excited states becomes 
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This equation describes the effect of the nanoparticles size on 

the energy gap of the absorption spectrum.  The first term is the 

bulk energy gap, the second term is the kinetic term, and R is the 

average width size for CuPc nanoparticles. The calculated and the 

measured values of the band gap are shown in Table 1 but the 

observed effect is much larger than the calculation.  

So the cause of the shift in the energy gap must have another 

explanation. One possibility is that the excitation is more sensitive 

to size effects than predicted by the simple model used above. 

While band gaps may depend on the orientation of the materials, 

the TEM pictures do not seem to indicate any preferred orientation. 

It is also possible that there are varying amounts of strain in the 

materials which can alter the band gap [24].  In our case this would 

imply that the amount of strain varied with the particle size. 

Further investigation will be necessary to determine the cause.  

Future work will involve reducing the size of the CuPc 

nanoparticles. This reduction should result in more significant 

shifts and expand the absorption-spectrum bandwidth of the CuPc 

which could be useful for organic photovoltaic (OPV) devices. 

Other work will involve replacing the donor layer in the bilayer 

OPV solar cells with layer of CuPc nanoparticles which can lead to 

improve the OPV performance. 

Conclusions 
CuPc nanoparticles were grown and deposited on glass 

substrates at room temperature by LLIRCT. We find that CuPc 

nanoparticles grow in size with increasing deposition time. The 

optical properties of these CuPc nanoparticles depend on the size 

of the particles. The band gap increases as the size decreases. 

Further reduction in size of the particles may result in more 

significant shifts which could be useful for altering the properties 

of electronic and optoelectronic devices. 
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