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Abstract 

PEDOT:PSS is the one of the most promising and widely used 
material for low cost large area flexible displays owing to their 
easy solution processing and nanoscale patternability. In this work, 
hole injection between PEDOT:PSS thin film and molecularly 
doped polymer layers of arylamine has been studied in a bilayer 
device configuration. The electrical properties of the bilayer device 
have been examined by studying the charge-discharge,    I-V and 
Time of Flight (TOF) characteristics of the devices. The work 
function of the PEDOT:PSS and aryl amine has been estimated by 
electrochemical measurements. Results show that PEDOT:PSS are 
efficient hole injectors to arylamine owing to their favorable 
molecular energetics. The efficiency of hole injection also depends 
on the conductivity of PEDOT and the strength of the electric field. 
The interfacial contact behavior between PEDOT and arylamine 
studied by steady state IV measurements and TOF measurements 
suggests that for highly conductive PEDOT:PSS, the hole injection 
is limited by the hole mobility in the charge transport layer where 
as for higher resistive PEDOT:PSS, it is injection limited.  Based 
on these results, a discharge mechanism has been proposed for the 
bilayer device.  Initial printing experiments were done on a 
xerographic development housing, where toner development on the 
bilayer device was observed at the exit of the development nip.  
Results suggested that the negatively biased magnetic brush plays a 
dual role in the print process.  It first discharges the bilayer device 
with its negative bias followed by toner development to the 
discharged area. The use of this novel electric field induced hole 
injection process for direct toner marking is discussed.   
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Introduction 
The basic steps in the xerographic (electrophotographic) 

process involve charge and image wise discharge of the 
photoconductor to create the electrostatic latent image, followed by 
development of the latent image with toner electrostatically and 
then image fixation with heat and pressure [1].  Xerography has 
become a multi-billion dollar industry and the technology is 
applying to almost all color laser printers ranging from low speed 
printers in home office to high speed color presses in print shop.  It 
is interesting to note that, other than the image file input through 
the laser ROS, which is digital, the entire printing process is still in 
an analog mode.  In this work, we report a study of a new electron 
transfer reaction from a molecularly doped layer of an aryl amine in 
polycarbonate to a thin film of PEDOT:PSS [2]. The net result of 
this electron transfer reaction is a hole injection from the 

PEDOT:PSS film to the arylamine charge transport layer.  This 
hole injection process triggers the discharge of the bilayer device 
process.  In addition, this hole injection process is shown to be 
sensitive to the applied electric field as well as the conductivity of 
the PEDOT:PSS  film.  The mechanism for the charge-discharge 
process of the bilayer is proposed.  The use of the bilayer device 
to demonstrate direct toner marking in the xerographic printing 
process is discussed.   

Experimental 
Materials. PEDOT:PSS films of surface resistivity ranging 

from ~ 100 ohms/sq to ~ 5000 ohms/sq) on Mylar substrate were 
either purchased directly from Orgacon or alternatively the 
PEDOT:PSS ink was purchased from H.C.Starck/Orgacon and 
different thickness of PEDOT:PSS films were coated using an 
internal slot dye coater. Hole transporting molecule, TPD and the 
polycarbonate polymer binder PCZ200 were obtained from 
internal source (structures in Fig. 1).  All coating solvents 
(methylene chloride, tetrahydrofuran and toluene) were analyzed 
reagent grade from Fischer and were used as received.  

Devices. The bilayer devices studied in this work was 
fabricated by simply coating a solution containing TPD and 
PCZ200 in a mixed solvent of tetrahydrofuran and toluene (70:30 
in ratio) over the PEDOT:PSS film (on Mylar) on a lab draw-
down coater using a 3-5 mil draw bar.  A typical coating solution 
consisted of ~ 14% of solid.  The concentration of TPD in the 
charge transport layer (CTL) was at 40% by wt.  The thickness of 
the CTL was typically ~ 20 μm and was controlled by the solid 
concentration of the coating solution as well as the wet gap of the 
draw bar.  The resulting bilayer device was air dried for 0.5 hour 
followed by vacuum drying at 100oC for 2 hours before electrical 
evaluation.  

Measurements and Techniques.  The surface resistivity of the 
PEDOT:PSS films were measured by a four probe point method 
using a Keithley 237 high voltage source.  The charge-discharge 
characteristics of the bilayer device were performed on an in-
house static scanner.  Gold dot was evaporated on the CTL for the 
electrical contact.  A schematic description of the apparatus is 
shown in Figure 1. Typically the bilayer devices were charged by 
the HV corona device and the surface potential were monitored 
using an electrostatic voltmeter (ESV).  Since the bilayer device 
was “static” throughout the measurement, the charging and 
monitoring of the surface potential was controlled electronically 
through the electric circuit within the static scanner, typically 
there was a ~ 0.1 s delay between charging and monitoring.   
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Fig. 1 A schematic of the “static” scanner. 

Printing Experiment with the bilayer device: Print test was 
carried out for an inkjet patterned PEDOT:PSS bilayer device 
overcoated with a TPD CTL layer. The patterned bilayer device 
was pasted and grounded on photoreceptor drum by silver paste. 
The entire drum was placed in the print catridge and the print 
catridge was placed on a printing fixture. The toner marking 
experiments were carried out on a xerographic development unit. 
The bilayer device in this study consists of a PEDOT:PSS film 
(surface resistivity 350 ohms/sq) overcoated with a 18 µm CTL 
layer. The strip of the bilayer device was pasted on an organic 
photoconductor drum (OPC) and was grounded to the ground plane 
of the OPC drum with silver paste.   

Results AND DISCUSSION 

Device Configuration and Electrical 
Characterization 

Figure 2 shows the configuration of the bilayer device 
and the materials used in this work.  The device comprises a 
molecularly doped charge transport layer (CTL) made of 
hole transport molecule TPD in polycarbonate over a thin 
film of PEDOT:PSS on a Mylar substrate. 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 2  Bilayer device: configuration and materials used. 

The charge and discharge characteristic of the bilayer device 
was studied on an in-house static scanner (Fig. 1).  Figure 3a shows 
the surface potential curves obtained from a typical PEDOT:PSS 
bilayer device.  Figure 3b shows the surface potential curves from a 
controlled bilayer device where the PEDOT:PSS film is replaced by 
a Ti/Zr metal layer.  By comparing with the control, the result 
indicates that the PEDOT:PSS bilayer device is charge capacitively.  
Unlike the control, the PEDOT:PSS bilayer device undergoes rapid 
discharge as soon as the electric field across the bilayer device is 
established. 

 
(a)  
 
 
 
 
 
 
 
(b)  

 
Fig. 3 (a) Typical charge – discharge curves for a PEDOT:PSS bilayer device, 
and (b) charge – discharge curves for a controlled bilayer device. 

This implies the occurrence of a hole injection reaction from 
PEDOT:PSS film to the TPD CTL immediately after charging up 
the device. Subsequently electron transfer from the neighboring 
TPD molecule to the injected hole occurs. 

A more detailed description of the charge-discharge process 
is described in the later section of the paper. It is important to note 
that very similar charge-discharge process is believed to occur in 
photoconductive devices in photoreceptors. The primary 
difference is that the charge-discharge process in photoreceptor is 
photogenerated where as in the present case it is a dark discharge 
process. 

Effect of Surface Resistivity of PEDOT:PSS Films 
on Discharge Rate 

The rate of the dark discharge was found to be sensitive to 
the conductivity of the PEDOT:PSS film for a common CTL 
(40% TDP in polycarbonate, ~ 18 μm thick).  Figures 4a and 4b 
depict the discharge curves for two bilayer devices with 
PEDOT:PSS films of different surface resistivity.  The result 
shows that the higher the conductivity of the PEDOT:PSS film, 
the faster the discharge rate and the more sensitive the device is. 
 
(a)  
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Fig. 7: Plot of steady state current density as a function of electric field for a 
CTL layer consisting of 40% aryl amine in polycarbonate(◊) and  PEDOT:PSS 
bilayer devices with surface resistivity of () 350 ohms/sq and (Δ) 1500 
ohms/sq.  

The calculated current density of CTL calculated from the drift 
mobility data is included in figure 7. The results indicate that the 
field effect of the CTL coincides with that of PEDOT:PSS bilayer 
devices prepared from PEDOT:PSS film with surface resistivity of 
350 ohms/sq. The comparable current density between the two 
devices indicate that the discharge of this particular bilayer device 
is limited by the hole mobility of CTL. In other words, the hole 
injection efficiency of the above PEDOT:PSS bilayer device is 
close to unity. On the other hand PEDOT:PSS bilayer device 
prepared from more resistive films (surface resistivity 1500 
ohms/sq) the field effect on current density is lower than that of 
CTL alone. This indicates that the discharge process is injection 
limited for more resistive films. 

Print test and Direct Toner marking with 
PEDOT:PSS bilayer devices: 

Figure 8 shows the print test with inkjet patterned 
PEDOT:PSS bilayer devices. This shows that the patterns can be 
printed normally using toner implying the successful demonstration 
of the novel electric field induced hole injection process in the 
xerographic printing process. 

 
(a)                                    (b) 

Fig. 8: PEDOT:PSS film patterned with the Dimatix inkjet printer (b) lines and 
text printed in the xerographic fixture using PEDOT:PSS/CTL bilayer device. 

Our next step was to carry out the printing experiment on the 
PEDOT:PSS bilayer devices using a xerographic development 
fixture without using the ROS and charger. The PEDOT:PSS 
bilayer device grounded to the drum was rotated through the 
development nip at a speed of 264 mm/sec. Figure 9 shows the 
cyan toner development before and after it passed through the 
development nip. This indicates that the toner can be directly 
printed into the imaging drum thus reducing both the number of 
components and steps in the xerographic process.  
 

 
(a)                              (b) 

Fig. 9: (a) Photograph of the PEDOT:PSS bilayer device grounded to the OPC 
drum (b) development of the toner patch on the PEDOT :PSS bilayer device 

Based on our mechanistic understanding, we hypothesize  
that the toner printing process still occurs in 2-step, namely 
electric field induced hole injection of the imaging member to 
create a surface voltage contrast followed by toner development.  
This 2-step process is accomplished within the development nip, 
resulting in direct toner printing without laser, ROS, charge and 
PR.  A schematic summary of the hardware and the print process 
is given in Fig. 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 Schematic illustration of the hardware and print process. 

This was further supported by comparing the Development 
Mass per unit Area (DMA) of the toner on PEDOT/TPD bilayer 
device with and without charger as a function of the development 
potential (Vdev). Figure 1 shows the plot of DMA vs. Vdev with 
and without charger. In the first case, the charger provides the 
negative bias followed by hole injection from the bilayer device 
resulting in the discharge of the device. Then the toner 
development occurs in the discharge areas 

 by a toned mag brush. In the second case, as described above 
mag brush plays a dual role, it provides the required electric field 
for the hole injection process followed by the development of the 
toner onto the electrostatic image resulted by hole injection 
process. It can be seen that the DMA of toner with and without 
charger are quite similar further confirming our hypothesis.  

 
 Fig. 11: Plot of Development mass of toner vs. Development potential (Vdev) 
with and without charger. 

Concluding Remarks 
In this work, we report a novel electric field induced electron 

transfer reaction between an arylamine hole transport molecule, 
TPD, and PEDOT:PSS thin film in bilayer device.  Evidence is 
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provided that bounded e-h pairs are formed under the influence of 
an electric field.  At field strength lower than the threshold field, the 
e-h pairs recombine . On the other hand, at higher electric fields, 
the e-h pairs dissociate, and this is followed by a hole injection 
reaction and a series of isoenergetic electron transfer across the 
CTL, leading to total discharge of the bilayer device. This 
hypothesis is supported by the interfacial contact behavior between 
PEDOT:PSS and CTL layer. We were also able to demonstrate 
direct toner marking using this novel electric field induced hole 
injection process. This simplifies the xerographic marking process 
by reducing the number of components and steps. We suggest that, 
we should be able to digitize the xerographic process when we 
couple the discharge process of the present bilayer device with an 
addressable TFT backplane.  
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