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Abstract 

It is well known that dye sublimation inks are designed to 

bond with polymers. In the textile industry, however, the most 

common printed textiles are made of cotton and cotton blends. 

100% cotton accounts for approximately 45% of the textile 

market. Recent developments in heat transfer paper carrier made 

it possible to use heat transfer printing on 100% cotton fabrics. 

Color reproduction capability of a heat thermal print is highly 

related to the amount of dye transferred. To achieve high dye 

transfer efficiency and obtain the best color reproduction 

capability, three primary parameters, heat transfer temperature, 

dwell time in the heat zone, and pressure, need to be taken into 

account. The main purposes of this experimental study are: first, 

to identify the most important factors that influence color 

reproduction on 100% cotton fabrics using heat transfer printing; 

second, to establish optimum process operating conditions so that 

the maximum yield of color gamut and optical density could be 

obtained. The experiment was conducted using a randomized 23 

factorial design in which every factor was run at two specified 

levels (1 = high level, -1 = low level). The factorial levels were 

determined based upon the practical operating conditions of the 

heat transfer press. Three independent factors in this study are: 

dwell time in the heat zone (X1), transfer temperature (X2), and 

pressure (X3). Color reproduction capability was evaluated in 

terms of optical density and gamut volume. It was found that 

pressure (X3) is the dominant factor affecting color reproduction 

on 100% cotton fabrics. 

Introduction  

The most common and well-known use of cotton fabrics is in 

textiles and clothing apparel. Some of the best properties of cotton 

fabric include high absorbency, resistance to heat, resistance to 

static, and strength and stability. Many times, cotton is combined 

with other fabrics in order to obtain better properties and to cut 

down on the cost of cotton fabric1. While clothing is the most 

common use of cotton, it is also being used in carpeting and rugs 

because it is easy to dye and wears better than some other fabrics 

commonly used for carpeting2. 

Dye sublimation heat transfer printing technology has been 

developed for textile printing for many years3. In the heat transfer 

printing process, the required image is first printed onto a paper 

carrier (can be done by either screen printing or ink-jet printing) 

using dye inks, which comprise sublimable dyes. Then the paper 

carrier is brought into intimate contact with textile fabrics, through 

a heated press. The paper carrier releases a color dye when heated, 

and the dyes sublime and diffuse into the fabric, permanently 

coloring it. Although digitally printed textile technology draws a 

lot of attention recently, this simple, flexible process still offers 

many advantages, such as quietness, low price, ease of color 

reproduction, reduced post processing, and low maintenance 

requirement. The textile thermal transfer printing method has been 

expanding into an increasing number of applications with its dry 

process and quick output digital image data4, 5. 

 With heat transfers, the printed ink film must be brought up 

to a “gel” state in order to transfer to the textile and bond well 

with the textile fabric. To achieve high dye transfer efficiency, an 

intimate and sufficient contact is required between the heat 

transfer press and the paper carrier, and between the paper carrier 

and the textile, to ensure efficient heat transfer across the 

interfaces and high activity of dye diffusion from the dye layer of 

the paper carrier to the dye-receiving layer of the textile fabric. 

Paper carrier is coated in order to help the paper withstand the 

high temperatures and high pressures used in heat transfer 

printing. The coated paper carrier used for heat transfer is found to 

have better ink holdout, improved ink tone/gloss reproduction, 

and ink absorption that is more uniform than uncoated paper. This 

type of paper is made to release as much of ink as possible onto 

the object that is being printed on using heat transfer. The most 

important properties of coated paper carrier are a smooth surface, 

high opacity, high brightness, sufficient mechanical strength to 

withstand the stresses of printing, and a pore structure that 

interacts effectively with printing ink. All of these properties of 

coated paper help to enhance the transfer process and can also 

contribute to better color reproduction. 

Three primary parameters for controlling heat transfer are the 

heat transfer temperature, the dwell time in the heat zone, and the 

pressure. Any unexpected variations in these three variables can 

adversely affect the quality of the finished product. In order to get 

good adhesion and a durable applied print, these three parameters 

need to be taken into account and need to be well defined. 

Depending on the type of textile being used, the optimum 

parameters for a specific textile material need to be established. 

For example, a fine dress fabric would be printed using the highest 

temperature compatible with the fiber, with a relatively short dwell 

time in the heat zone to give a well-defined print on the surface of 

the fabric. Conversely, a needle punch fabric where dye 

penetration is important, the temperature would be below 

optimum, and the time dwell increased to hold the dyes in the 

vapor form longer to assist penetration4, 5, 7. Previous study shows 

that heat transfer temperature and dwell time are the two dominant 

key factors affecting color reproduction on polyester fabrics8. 

Recent developments in heat transfer paper carrier made it 

possible to use heat transfer printing on 100% cotton fabrics. The 

purpose of this study is to identify the most important factors that 

influence color reproduction on 100% cotton fabrics using heat 

transfer printing and to establish optimum process operating 

conditions. Establishing the optimum parameters will help predict 

and control color reproduction for heat transfer printing on 100% 

cotton fabrics. 
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Experimental 

This study utilizes a randomized 23 factorial design which 

contains eight treatment combinations (Table 1). The run order for 

the eight treatment combinations was randomly generated by 

computer (randomized design) to reduce bias introduced by 

unplanned changes in the experiment. Five observations were 

systematically recorded for each of the eight treatment 

combinations for a total sample size of 40.  

Table 1: 2
3
 Factorial design 

Long Dwell Time Short Dwell Time  

Low 

Temperature 

High 

Temperature 

Low 

Temperature 

High 

Temperature 

Low Pressure     

High Pressure     

Factor Level 
Factors 

-1 1 

Dwell Time (X1): 

Temperature (X2): 

Pressure (X3): 

25 seconds 

380°F 

60 psi 

35 seconds 

400°F 

100 psi 

A digital four-color test chart was designed for this study. 

The test chart included a TC 2.83 RGB test target designed for X-

Rite i1iO Spectrophotometer and photographic images. The list of 

the equipment and materials used in this work is presented as 

follows. 

 Textile media: 100% cotton fabrics.  

 Heat transfer paper: i-Trans™ Paper from LRi/Laser 

Reproductions Inc. 

 Ink-jet printer: Epson Stylus Pro 4880 printer with dye 

sublimation inks. 

 Heat transfer press: DC16AP press from Geo Knight & Co 

Inc.  

The designed test target was first printed onto i-Trans™ 

transfer paper by using Epson Stylus Pro 4880 ink-jet printer. The 

printed transfer paper was brought into contact with 100% cotton 

fabrics through the DC16AP heat transfer press using eight 

different treatment combinations. 

Color measurements were taken using an X-rite i1iO 

Spectrophotometer with illuminant D65 and a 10-degree observer 

for textile prints. The measurement files were used to generate 

ICC profiles with ProfileMaker Pro 5.0.8. The color gamut was 

then determined by using CHROMiX ColorThink Pro 3 software. 

The color reproduction capability of 100% cotton fabrics was 

evaluated in terms of optical density and color gamut. The 

software package employed to analyze the data was Minitab 14.0.   

ANOVA and Regression Analysis 

ANOVA and Regression statistical procedures were employed to 

determine the main effects of the independent variables and their 

interaction effects on the color reproduction capability. The 

significant level was set to be .05 for all the analyses, i.e., α = 0.05. 

The full model derived from 23 the factorial design is: 
^

Y  =α+β1X1 +β2X2 +β3X3 +β4X1X2 +β5X1X3 +β6X2X3 +β7X1X2X3 + ε,  

where X1 = dwell time, X2 = temperature, and X3 = pressure. 

Figures 1 to 5 illustrate the main effects plots for the optical 

density and color gamut. It shows the dominant factor for color 

reproduction on 100% cotton fabrics is pressure (X3), because its 

significance is ranked at the top on the optical density and color 

gamut attributes.  

T
e
r
m

Standardized Effect

ABC

AB

BC

B

A

AC

C

14121086420

2.04
Factor Name

A X1

B X2

C X3

Pareto Chart of the Standardized Effects

(response is Density_Y, Alpha = .05)

 
Figure 2: Main effects plot for the optical density of yellow. 
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Figure 3: Main effects plot for the optical density of magenta. 
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Figure 4: Main effects plot for the optical density of cyan. 
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Figure 5: Main effects plot for the optical density of black. 
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Figure 6: Main effects plot for the color gamut. 

 

Table 2 shows the ANOVA and Stepwise Regression 

summary for the main and interaction effects on the optical density 

and color gamut. The treatment combination of (X1, X2, X3) = (1, 

1, 1) is suggested to achieve the maximum yield of optical 

densities of yellow, magenta, and cyan. In other words, the highest 

dye transfer efficiency was achieved when the dwell time was 35 

seconds (X1 = 1), heat transfer temperature was 400°F (X2 = 1), 

and the pressure was 100 psi (X3 = 1) on the DC16AP heat 

transfer press. The treatment combination of (X1, X2, X3) = (-1, 1, 

1) is suggested to achieve the maximum yield of color gamut, 

while the treatment combination of (X1, X2, X3) = (-1, -1, 1) is 

suggested to achieve the maximum yield of optical density for the 

black. The R2 values in Table 2 indicate that the prediction model 

explains approximately 94% to 99% of the total variability in 

optical densities and color gamut. 

Table 2: Summary of ANOVA and regression analyses 

Optical Density 
 

Yellow Magenta Cyan Black 
Color Gamut 

Significant Level α = 0.05 α = 0.05 α = 0.05 α = 0.05 α = 0.05 

Significant Effects 

X3 = 0.0215 

X1X3 = 0.0195 

X1 = 0.0185 

X2 = 0.0165 

X2X3 = 0.0135 

X1X2 = 0.0065 

X1X2X3 = - 0.0065 

 

X3 = 0.0435 

X1X2 = 0.0135 

X2 = 0.0125 

X1X3 = -0.0115 

X1X2X3 = - 0.0085 

X2X3 = 0.0065 

X1 = 0.0065 

 

X3 = 0.0715 

X2 = 0.0165 

X2X3 = 0.0105 

X1X3 = 0.0095 

X1 = -0.0085 

X1X2X3 = 0.0065 

X1X2 = 0.0045 

 

X3 = 0.045 

X2 = -0.027 

X1X2X3 = 0.025 

X1X2 = -0.018 

X1 = -0.015 

X2X3 = 0.012 

X1X3 = 0.006 

 

X3 = 20204 

X1 = -5750 

X2 = 3963 

X1X3 = 3035 

X1X2X3 = 2268 

X2X3 = 1453 

 

Prediction Equation  

0.711 + 0.00925 X1 + 

0.00825 X2 + 0.0108 X3 

+ 0.00325 X1X2 + 

0.00975 X1X3 + 

0.00675 X2X3 - 0.00325 

X1X2X3 

1.42 + 0.00325 X1 + 

0.00625 X2 + 0.0218 X3 

+ 0.00675 X1X2- 

0.00575 X1X3 + .00325 

X2X3 - 0.00425 X1X2X3 

 

1.15 - 0.00425 X1 + 

0.00825 X2 + 0.0358 X3 

+ 0.00225 X1X2 + 

0.00475 X1X3 + 

0.00525 X2X3 + 

0.00325 X1X2X3 

 

1.43 - 0.0075 X1 - 

0.0135 X2 + 0.0225 X3 - 

0.009 X1X2 + 0.003 

X1X3 + 0.006 X2X3 + 

0.0125 X1X2X3 

 

230266 - 2875 X1 + 

1982 X2 + 10102 X3 + 

1518 X1X3 + 726 X2X3 

+ 1134 X1X2X3 

 

Best Treatment 

Combinations 

X1= 35s 

X2= 400°F 

X3= 100 psi 

(1, 1, 1) 

 

X1= 35 s 

X2= 400°F 

X3= 100 psi 

(1, 1, 1) 

X1= 35 s 

X2= 400°F 

X3= 100 psi 

(1, 1, 1) 

X1= 25 s 

X2= 380°F 

X3= 100 psi 

(-1, -1, 1) 

X1= 25 s 

X2= 400°F 

X3= 100 psi 

(-1, 1, 1) 

Estimated Max. Value 0.76 1.45 1.21 1.47 243,599 

R2 94.6% 96.2% 98.2% 97.8% 99.9% 

  
Color Reproduction Capability Comparison 

Table 3 displays the color reproduction capability 

comparison for 100% cotton, cotton/polyester blend, and 

polyester fabrics. It shows that polyester fabrics yield highest 

gamut volume and tend to have higher density for yellow and 

cyan. Cotton/polyester blend fabrics, on the other hand, produce 

higher density for magenta and black. Overall, 100% cotton 

yields lower optical density and gamut volume, compared to 

other fabrics using heat transfer printing.   

Table 3: Color reproduction capability comparison 

 Cotton Blend Polyester 

Density Y 0.71 0.82 0.88 

 M 1.42 1.45 1.33 

 C 1.15 1.32 1.49 

 K 1.43 1.46 1.37 

Color Gamut 230,265 259,827 291,021 

Conclusions 

 The dye particles used in the dye sublimation inks are 

designed to bond with polymers, so that the higher the polyester 

content in the material, the more dye will bond with material, 

producing a brighter image. Recent developments in heat 

transfer paper carrier made it possible to use heat transfer 

printing on 100% cotton fabrics. We found that pressure (X3) is 

the dominant key factor affecting color reproduction on 100% 

cotton fabrics. However, the optimum parameters for observed 

print attributes are varying. Unlike paper carrier used for 

polyester fabrics, the heat transfer paper used for 100% cotton 

fabrics demonstrated variations during the heat transfer printing 

process. In addition, the optical density levels and gamut 

volume of heat transfer on 100% cotton are not competitive with 

polyester or cotton/polyester blend fabrics. To achieve high dye 

transfer efficiency and obtain better color reproduction 

capability, effort must be taken to continuously improve the 

quality of paper carrier. 
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