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Abstract 
Conductive tracks are produced by ink jet printing of a 

commercial silver nanoparticle ink on different substrates. We 

observed that applying mesoporous coatings on the substrates 

resulted in metallic conductivity immediately after printing. The 

influence of the average pore size and some chemical parameters 

of the coatings were studied, as well as the thermal treatment after 

printing. We found that using substrates with slightly acidic 

cationic coating and small pore sizes of about 15 nm resulted in 

the highest conductivity for the given ink even without any thermal 

treatment applied. Another crucial parameter found was the 

smoothness of the surface, which was estimated by the surface 

gloss. After drying / “sintering” of the printed  tracks for 9 min at 

100 °C in an oven a specific resistance of  13 µΩ⋅cm (about 

eightfold that of bulk silver) could be achieved using a 

commercially available substrate. This is a significant higher 

value than recently reported conductivities obtained after heating 

to much higher temperatures. Additionally, some chemical post 

treatment of the prints by aqueous solutions can be applied for a 

further increase in conductivity.  Furthermore, samples produced 

were exposed to “photonic sintering” equipment to assess the 

potential of this technique for inline post-processing of metallic 

structures on porous substrates. 

Introduction 
A major challenge in printed electronic applications is the 

production of conductive tracks for connecting / “wiring” of 

individual printed components. Low resistivity of the connections 

is essential in most cases to avoid energy losses and to operate 

devices at low voltages. Presently, there are no other efficient 

materials but metals available for wiring.  

Commercially available ink jet printable stable inks of metals 

are commonly based on silver, as silver is not oxidized in air and 

silver inks are therefore processable in normal atmosphere. The 

silver in jetable inks is present in the form of nanoparticles. After 

printing, the prints have to be heated to temperatures of 150°C or 

higher for several minutes or even hours to achieve metallic 

conductivity of the printed area, which is believed to cause 

sintering of the individual nanoparticles to a solid silver layer. The 

need for heating limits the choice of usable flexible substrates. 

Some recent studies [1, 2] indicated that much shorter sintering 

time and lower temperatures are needed when silver nanoparticle 

inks are printed on special porous substrates instead of foils or a 

special chemical treatment [3] is applied to the printed structures 

after drying. To explore the main factors and mechanisms for low 

temperature “sintering” this study was started. 

Experimental  
Ink jet printing of silver structures was done using a Fujifilm 

Dimatix Materials Printer (DMP) 2800 with 10 pL nozzle 

cartridges and Silverjet DGP 40LT-15C ink from ANP. The test 

lines were 0.5 mm in width and 20 mm in length, with larger and 

thicker contact pads on both sides. A dot spacing of 20 µm (1270 

dpi) was used. The printed pattern is shown in figure 1.  

 

 

Figure 1. Ink jet printed test pattern used for resistivity measurements 

From the droplet size the thickness of the silver lines was 

calculated (assuming compact silver) to 1.1 µm (laydown 11.6 g 

Silver/m²). However, a gravimetric calibration showed that at the 

chosen ink drop speed of 7 m/s the real drop volume was 

significantly lower than 10 pL, resulting in a real silver laydown of  

8.3 ± 0.1 g/m², and a compact silver thickness of 0.79 µm.  

Resistivity measurements were performed by the four-probe 

(Kelvin probe) method to overcome any contact problems. The 

resistance was, unless otherwise mentioned, measured after 3, 6, 9 

and 12 minutes of drying at 70 °C. 

The substrates investigated were all based on resin 

(polyethylene) coated paper with an additional layer of 

mesoporous material. A commercially available material from 

Felix Schoeller (“p_e:smart” Type 3) was taken as a reference. 

This material also contains a mesoporous coating on resin coated 

paper. For the experimental substrates, different coating 

formulations based on various boehmite type alumina as well as 

fumed silica pigments and polyvinyl alcohol as a binder were 

applied to the resin coated paper by manual wire rod coating and 

dried in an oven.  

Additional samples for photonic sintering were produced using 

Xaar126 50 pL printheads using the commercial material 

(“p_e:smart” Type 3) at resolution of 360 dpi. Samples were 

prepared without heating the substrate at a feedrate of 0.2 m/s. 
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Results 

Porous Versus Non-porous Substrates 
In figure 2 a (left), a print on the resin coated paper base itself 

(with a primer layer on top) as a substrate is shown, whereas figure 

2 b (right) shows the same printing on the “p_e:smart” Type 3 

reference substrate. The pictures clearly show the advantage of an 

absorptive coating regarding lateral resolution of the print. 

Furthermore, the absorptive coating lead to much lower resistivity 

of the printed line directly after printing and after temperature 

treatment at 70 °C, as shown in figure 3. 

 

Figure 2. Optical micrographs of printed silver patterns, a (left): Non-absorptive 

substrate, b (right): Absorptive mesoporous reference substrate. 

 
Figure 3. Resistance of silver lines printed on absorptive and non-absorptive 

substrate 

Effect of Pore Size  
Coatings with a series of boehmite type alumina pigments with 

five different primary particle sizes were applied on the resin 

coated paper base. The resulting pore diameters were determined 

using mercury intrusion porosimetry (Porotec PASCAL 140/440). 

Depending on the pigment used, we observed average pore 

diameters between 8.2 and 32.2 nm.  

On this substrate sample series, silver tracks were printed as 

described above, and the resistance of the tracks was determined 

after 6 and 12 minutes drying time at 70 °C.  The measured 

resistance as a function of the measured average pore size in the 

substrate coating is shown in figure 4. 

 

 
Figure 4. Resistance of silver lines as of function of the average pore size of 

the coating 

From figure 4 can be seen that there is a continuous decrease 

in track resistance with pore diameters below 25 nm, and the effect 

of increased dry time is low. However, when the pore size exceeds 

25 nm, the resistance increases steeply, and the effect of dry time is 

more pronounced. Although the particle size of the silver 

nanoparticles is not disclosed by the ink manufacturer, it is 

believed to be in the order of some 10 nm, so this observation can 

be explained by the mechanism given in [1].  

 

Effect of Substrate Smoothness / Gloss  
In several lab coatings, defects in the coating could be 

observed. Typical defects are shown in figure 5. It is very likely 

that such defects can increase the resistance of the printed silver 

tracks, which are below 1 µm in thickness. 

 

       
 

Figure 5.Typcal defects (“cracking”) observed in lab scale coatings. 

Beside these defects, we suspected that our lab scale coatings 

may have a less smother surface than industrial coatings. An easy 

way to characterize the smoothness of the substrates at spatial 

frequencies in the order of the wavelength of light is the 60° gloss 

value, which we took as an indicator for surface quality. In      

figure 6, the resistance of two lab scale and one industrial coating, 

all with the same coating formulation, is given as the function of 

60° gloss.  
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Figure 6. Effect of surface smoothness, expressed as gloss value at 60°, on 

the final resistance of silver tracks.  

From figure 6 can be concluded that surface smoothness is a 

major factor to achieve low resistance of inkjet printed silver. 

Therefore, only sample substrates showing the same surface 

quality should be compared. Generally the surface quality of 

industrial coatings was found to be much better than that of lab 

samples, mainly due to better control of the process and the drying 

conditions. 

 

Increased Drying / Sintering Temperature   
In order to speed up the observed reduction of the track 

resistance during drying at 70 °C, the drying temperature was 

increased to 100 °C, which is still well below to boiling point of 

the ink solvent (triethylene glycol monomethyl ether, 256 °C). For 

the reference substrate (industrial coating, p_e:smart type 3) we 

found that the decrease in resistance is faster and completed after  

5 minutes, and a final resistance of  

7.3 ± 0.1 Ω is reached, compared to 10.8 ± 0.5 Ω which is reached 

after 12 min at 70°C.  

Chemical Post-Treatment 
There are hints from literature [3] that treating inkjet printed 

silver lines with salt solution may further help to decrease the 

resistance without heating at temperatures above 100 °C. 

We treated the printed silver tracks with 1 mol/l aqueous 

solutions of sodium chloride, potassium chloride, ammonium 

chloride, ammonium sulfate and sodium nitrate. After dipping the 

prints for 10 s into the solution, the samples were washed for  

20 s in deionized water and dried. No significant change of 

resistance of the silver tracks was found after this treatment, which 

may be due to the fact that we used already partially “cured” 

samples. However, an approximately 30% decrease in resistance 

was observed after a very short (1 second) treatment in sodium or 

ammonium thiocyanate solutions, which are known to form 

soluble complexes with silver. It seems that the merging of the 

individual silver nanoparticles to a compact layer can be promoted 

by such a treatment, but this is very difficult to handle, as the silver 

tracks completely were detached by the thiocyanate solutions 

within several seconds. 

 

 

Photonic Sintering 
Sintering experiments were conducted using a Xenon Corp. 

Sinteron 500 System equipped with a Cerasil lamp, which reliefs  

the  UV  dose. An oval reflector was used in order to be able to 

alter the energy density by changing the focus onto the printed 

substrates.  

Figure 7 clearly illustrates the influence of the focal length of 

the used reflector. Optimum cure with singles flashes was found to 

lie within 1.5 inch to 2 inch from the casing of the lamp, which did 

not coincide with the specified focal length provided by the 

supplier. Optimum resistivity values were 5.5 Ω/cm for a single 

pixel and 3 Ω/cm for double pixel lines. The behavior of the 

resistivity curve can be understood by the morphological changes 

of the silver deposits as a result of the applied energy. At large 

distances, e.g. the substrate with the functional material being 

strongly out of focus, not enough energy is applied to the sample 

to reach maximum compaction and grain growth. With better 

matching to the focus of the illuminator, more energy is supplied 

to the deposit, which in turn is converted into thermal energy. This 

high temperature with a very short rise time, enables significant 

grain growth [5] and, therefore, reduction of resistive losses in the 

neck between two particles. In focus the thermal energy peaked the 

thermal stability of the material and substrate deformation was 

observed.   

Sheet resistances were recorded for three different doses and 

exhibited a rapid decrease from 400 mΩ/□ at 2.5 inch to 200 mΩ/□ 

at 1.5 inch distance, however, with beginning deformation of the 

substrate around the metallic deposits.  

 
Figure 7. Effect of focus on the electrical performance of the silver structure 

[SunJet UA5603, single layer, 360 x 360 DPI] 

While multilayer samples were prepared for this investigation, 

non of these could be sintered successfully, as adhesive failure 

between deposit and substrate promoted delamination. This effect 

is yet not fully understood, but is most probably attributed to the 

remaining solvent components in the deposit once the capillaries 

are saturated with solvent or an impermeable layer was formed by 

a preceding deposit. This suggests that thorough pre-drying of 

multilayer deposits is essential for the process to be successful. 
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Discussion and Conclusions 
The transition of dispersed silver nanoparticles in the inkjet ink 

to a conductive silver track seems to involve several steps and 

processes. 

First, the metallic particles have to be separated from the 

solvent or dispersion liquid, and thereby immobilized. When a 

mesoporous substrate is used with pore size less than the silver 

particle size, this can be achieved by a “filtration” process. If this 

filtration process is fast, a print with high accuracy is obtained, and 

no “coffee ring effect” is observed. Evaporation of the dispersion 

liquid is another possible way to immobilize the silver 

nanoparticles, but this process may be slower or demand elevated 

temperatures. 

Second, the surface of the printed silver nanoparticles has to be 

cleaned from any insulating material to electrically contact each 

other. Such organic insulating materials are generally needed to 

stabilize the inkjet ink against sedimentation or coagulation of the 

silver nanoparticles before printing. We assume that a slightly 

acidic or cationic substrate coating can facilitate the detachment of 

the stabilizing molecules adsorbed to the silver surface. 

Experiments with anionic or slightly alkaline coatings showed 

much higher resistance of printed silver lines, as well as the need 

for increased curing temperature and time. 

Third, the contact between the silver nanoparticles has to 

increase from point-like contacts to a porous network of fused 

particles, in the ideal case to a compact silver layer. In a recent 

paper [4] is clearly shown that this merging process occurs even at 

room temperature. We found for samples stored over a longer 

period at room temperature without a thermal drying treatment 

directly after printing that the resistivity decreases slightly with 

time even after several days.  

It was furthermore shown, that alternative sintering techniques, 

such as photonic sintering can create results similar to those of 

convective oven sintering in a fraction of the interaction time.  

Resistivities were found to be approx. 5.5 Ω/cm for single pixel 

and 3 Ω/cm for two pixel wide lines, respectively. Sheet 

resistances for single silver layers on “p_e:smart” Type 3 were 

found to be 200  mΩ/□ at the onset of substrate deformation.  

We conclude from our experiments that the most critical step 

toward inkjet printed silver tracks is the removal of molecules from 

the silver nanoparticle surface after printing. This step can be 

significantly supported by printing on mesoporous substrates due 

to the efficient removal of the ink dispersion liquid and much of 

the ink additives by a filtration process. Furthermore, a suitable 

chemical composition of the substrate surface promotes desorption 

of stabilizers adsorbed to the silver surface. A suitable thermal 

post-process may then be applied to convert this more optimal base 

into a percolation network with increased grain sizes for low 

resistance conductors. 
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