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Introduction 
Digital Fabrication is also known as Digital Manufacturing, 

Rapid Prototyping, Solid Freeform Fabrication (SFF), Rapid 
Manufacturing, Desktop Manufacturing, Direct Manufacturing, 
Direct Digital Manufacturing (DDM), and Layered 
Manufacturing. It primarily includes additive methods that build 
objects in layers, but it also includes systems that combine additive 
and subtractive technologies.  The following paper traces the 
evolution of patterned controlled to numeric controlled to 
subtractive computer numeric controlled to additive and hybrid 
computer controlled manufacturing methods. It describes and 
evaluates each of these methods for their existing possible 
applications based on its systematic limitations.  

Origins of Numeric Control for Manufacturing 
The automation of manufacturing to increase production 

speed, accuracy and product quality, while reducing labor cost, 
gave rise to types of patterned mechanisms for managing 
manufacturing processes. The use of punched paper rolls and 
punched cards to instruct looms as to the pattern to weave offers 
examples of process control mechanisms that foreshadowed 
numeric controls.  

In 1725, Basile Bouchoni, a textile worker in Lyon, France 
and son of an organ maker, used a roll of perforated paper tape to 
partially automate the process of setting up drawloomsii. These 
devices employed cords as part of their figure harness to lift each 
weft thread in order to weave patterns into fabric. Bouchon’s 
punched paper roll increased the accuracy of patterning by 
directing the action of the figure harness. In 1728, Bouchon’s 
assistant, Jean Batiste Falcon, improved the process by replacing 
the punched paper tape with an endless loop of sewn together 
rectangular cards with its punched holes arranged in rows. The 
process still required two workers, a weaver to operate the shuttle 
and tension the weave and a drawboy to manage the figure harness 
according to the punched pattern. In 1745, the inventor Jacques de 
Vaucanson, who created automatons including a life sized flute 
player with a repertoire of twelve songs, a tambourine player and a 
duck that could drink, eat grain and defecate, developed an 
automated loom advancing Bouchon’s and Falcon’s punched 
control systems.  The weavers of Lyon, however, did not adopt the 
Vaucanson design until Joseph Marie Jacquard adopted its 
principles in the creation of his successful Jacquard loom in 1801.  
As the son of a family that owned a mill, Jacquard could 
implement and benefit from the use of his device, a position 
Vaucanson lacked in overcoming weaver objections to the labor 
savings his invention enabled. The Jacquard process and its 
variants rapidly became methods for weaving patterned fabrics due 
to their cost savings and improved accuracy.   

Beginning in 1946, John T. Parsons and Frank L. Stuleniii 
used punch card controlled computers to calculate the complex 

curves required for machining of helicopter rotor blades. By 1948, 
the US Government awarded Parsons' company a contract for 
complex curve aircraft wing manufacture. IBM with its computing 
capabilities and MIT with its expertise in servo-mechanics 
participated as subcontractors for the project. The developments of 
this group for servo controls and programming language led to 
computer numeric control (CNC), the basic carriage mechanism 
for subtractive and later additive digital fabrication. On May 5, 
1952, Parson filed the patent titled, Motor Controlled Apparatus 
for Positioning Machine Tool, which the US Patent Office awarded 
him in January of 1958, US Patent # 2,820,187.  

During the early 1980s, Chuck Hulliv created one of the first 
additive digital fabrication methods, which he termed 
Stereolithography  (SLA), for which USPTO awarded him US 
patent # 4,575,330 in 1986. During that same period, Dr. Carl 
Deckard of the University of Texas at Austin developed Selective 
Laser Sintering (SLS). 

Additive and Hybrid Digital Fabrication 
Methods 

Stereolithography (SLA or SL) 
According to 3D Systems, the largest manufacturer of 

additive digital fabrication equipment, 75% of additive digital 
fabrication products used Stereolithographyv (SLA or SL), which 
uses 3-D CAD data to target laser emitting UV energy to fuse 
liquid photo-reactive resins materials and composites into solid 
cross-sections, layer by layer, in order to build three-dimensional 
parts. SLA technology has proven useful for concept development, 
design validation, form and fit analysis, molding and casting 
patterns, wax forms for jewelry casting, dental forms, architectural 
models, and some machine molds & parts. It is limited to 
prototypes, models, casting forms, and small plastic products, all 
of which using photopolymers available for SL processing. UV 
curable SL chemistry contains photo-initiators that are relatively 
costly and potentially hazardous ingredients. Most SLA resins are 
acrylates that use the free radical photo initiators. The photo-
initiated process involves both diffusion of the UV radiation and 
oxygen inhibition of polymerization. It also suffers from slow 
production speed and visible artifacts from the layering and curing 
process.  Some of the photopolymer chemistry is difficult to sand 
and paint. 

Micro Stereolithography (MSL)  
Like standard stereolithography, micro stereolithography 

forms 3-D items through layer-by- layer coating and laser UV 
curing photosensitized resinsvi. MSL, however, uses very fine 
resin solids that provide layers as thin as 1 micrometer.   

Researchers have developed a number of strategies for 
refining the resolution of standard stereolithography processes to 
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produce layers in the single digit micrometer to nanometer range 
that eliminate visible artifacts and feature resolutions that enable 
functions at micrometer and nanometer scales. Some system 
designs refined the focus of lasers within the layer as opposed to 
others that targeted the surface of the layer. Other systems reduced 
the diffusion of the laser’s UV radiation to improve acuity. 

MSL includes the D-MEC (Japan) Acculas Micro Laser 
Modeling System. It is used for producing MEMS (Micro 
Mechanical Electrical Systems) prototypes and manufacturing 
MEMS devices and master molds for nanoprint lithography.  

Our presentation will also evaluate Film Micro 
Stereolithography (FMSL). 

Laser‐Engineered Net Shaping (LENS) 
LENS uses a print head that moves in X, Y, and Z-axes with 

tilt and rotate, pitch and yaw options on some devices. High-
intensity fiber laser light is focused through the print head to sinter 
the metal powder as it exits the head and attaches to the target 
substrate in an atmosphere of inert gas to prevent oxygen from 
contaminating the process. Defense, Aerospace, Energy Industries 
and medical device manufacturers use LENS fabrication systems 
to both repair and fabricate metal parts using titanium, nickel, 
cobalt, stainless steel and other alloys. Optomec, headquartered in 
Albuquerque, NM, manufactures the LENS MR7, LENS 750 and 
LENS 850-R systems.vii  The LENS 850-R offers a work area 
envelope of 900x1500x900 mm. 

LENS ability to form fully dense parts with high performance 
characteristics along with its ability to repair as well as 
manufacture parts has favored high tech industries using it. One 
drawback to LENS is its lack of support fillers, which can result in 
an object with excess material that requires post-processing 
machining.  

LENS is also termed Direct Metal Deposition (DMD).  

Selective Laser Sintering (SLS) Direct & 
Indirect 

SLS uses a laser to cure photosensitive powder, to selectively 
sintering it and bond it to form a thin layer on the object. It builds 
objects layer-by-layer in a temperature controlled oxygen-free 
chamber (typically in a nitrogen atmosphere) on a build piston 
platen. A powder leveling roller coats the build piston after each 
scanning laser curing until the object is fully built. SLS can fuse 
small particles of ceramic, glass, plastic or metal layer-by-layer 
into functional products or parts. Direct Selective Laser Sintering 
use materials, such as metal powders without binders, that once 
sintered do not require post processing. Indirect Selective Laser 
Sintering employs binders with metallic and ceramic powders that 
require post processing, such as kiln heating, after sintering to 
create the finished item.  

Selective Laser Melting (SLM) 
Selective Laser melting (SLM) is an additive metals 

manufacturing process that is very similar and practically identical 
to SLS. While SLS is used to fuse ceramic, glass and plastic in 
addition to metals, SLM is primarily employed to fuse metal 
powders. SLM commonly employs an ytterbium fiber high-
powered laser to weld metal powders together layer by layer in 
accordance with computer aided design (CAD) instructions. Like 

SLS, the SLM system recoats a layer of metal powder ranging 
from 20 to 100 micrometers. After each layer is laser fused where 
intended, a powder coating system deposits a fresh layer of powder 
in thicknesses ranging from 20 to 100 microns in preparation for 
laser action. Not fused metal powder serves as support until the 
SLM device fully forms part and removes the not fused metal 
powder. The process produces fully dense metal pieces from 
titanium, cobalt chrome, stainless steel and tool steel. 

The Dental, Orthopedics, Defense, Aerospace and Electronics 
Industries use this technology.  

MTT Technologies Group of Staffordshire, England UK 
manufactures two SLM devices, the MTT SLM125 and MTT 
SLM250. Both devices use argon gas as a build atmosphere. 

Electron Beam Melting (EBM) 
EBM uses an electron beam to melts metal powder in a layer-

by-layer build process. The build occurs in a vacuum enclosure to 
prevent oxidation and other chemical reactions that could 
contaminate the fabricated item. Its elevated and even temperature 
build environment results “in stress-relieved parts with material 
properties better than cast and comparable to wrought material.”viii 
EBM typically first scans the metal powder bed to produce the 
optimal elevated temperature for the specific alloys being melted. 
It then melts the build item’s contours and lastly, the interior mass.  
EBM does not use mirrors or other optics, like SLA, SLS and 
SLM, to control energy used for fabrication. Instead 
electromagnetic coils control the electron beam, which enable high 
precision control without optical diffusion and a very fast build 
process.  It can also employ deflection electronic to melt multiple 
locations at the same time. 

EBM is particularly effective for fabrication with titanium 
alloys, including combinations with aluminum. The process is also 
used with zirconium, niobium, tantalum, nickel and cobalt.  Its 
builds are fully formed and dense, thereby not requiring thermal 
post processing. EBM produces excellent mechanical and physical 
properties for its output, which include implants for the medical 
applications and parts and castings for the aerospace and 
automotive industries. Arcam AB, headquartered in Gothenburg, 
Sweden, manufactures two EBM devices, its A1 for implants and 
A2 for large industrial parts. The major limitation to EBM is its 
capital cost, current equipment build size of 20x20s35 cm, its 0.2 
to 1.0 mm beam spot diameter and its exclusive use with metal 
powders. 

Electron Beam Freeform Fabrication (EBF3) 
EBF3 feed a metal wire to an e- beam that, in an inert 

atmosphere, melts the material that is then deposited.  It typically 
deposits titanium, nickel, stainless steel, and refractory alloys. It 
can vary alloy and chemistry types throughout the formed item 
component to vary strength, fatigue performance, & toughness. It 
provides hybrid structures with lugs and bosses without high fault 
zones associated with castings. It also offers a very fast fabrication 
method for the modification and repair of metal objects 
manufactured using other technologies.  

NASA’s Langley Research Center in Hampton Roads, 
Virginia developed EBF3 as a tool to rapidly fabricate structures 
with desired performance characteristics.ix  
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Sciaky Inc. of Chicago, IL, (a subsidiary of Phillips Service 
Industries) manufacturers the Direct Manufacturing Electron Beam 
Freeform Fabrication systems.  

Fused Deposition Modeling (FDM) 
FDM is an additive digital fabrication process that melts, 

extrudes and deposits layers of thermoplastic polymer from a coil. 
Stratasys, the second largest manufacturer of additive fabrication 
systems, employs FDM with its line of FORTUS industrial build 
devices. They use 

Acrylonitrile Butadiene Styrene (ABS), Polycarbonate (PC), 
Polyphenylsulfone (PPSF/PPSU) thermoplastic coils.  The 
FORTUS lines ability to process PC and PPSF/PPSU chemistry 
enable it to provide functional prototypes and direct digitally 
manufactured parts for some applications. 

FDM also offers a relatively low capital cost avenue for 
hobbyists and students to be introduced to and use 3-D digital 
fabrication process.  MakerBot of Brooklyn, New York and Bits 
From Bytes (BFB) of Clevedon, North Somerset, UK, produce 
low-cost FDM kits that purchasers can assemble into operating 
digital manufacturing systems. Additive digital manufacturing’s 
first and largest supplier, 3D Systems acquired Bits From Bytes as 
part of its vision to expand digital fabrication beyond computer 
added design users to a broader audience.  BFB manufactures two 
FDM type printers:  BFB 3000 Plus pre-assembled fabricator and 
the RapMan 3.1 kit. MakerBot offers the Thing-O-Matic and the 
Cupcake kits. BFB offers its 3000 Plus with from one to three 
extrusion heads. For the BFB 3000 Plus and the RapMan 3.1 kit, it 
supplies coil deposit chemistry including: Poly Lactic Acid (PLA), 
Acrylonitrile Butadiene Styrene (ABS), Poly Propylene (PP), High 
Density Poly Ethylene (HDPE), Low Density Poly Ethylene 
(LDPE), and un-plastised Poly Vinyl Chloride (uPVC).  PLA 
derives from cornstarch and a biodegradable plastic that is useful 
for making prototypes. ABS is use for making automobile 
bumpers. PP makes automotive batteries, facemasks, containers, 
filters and many other items. HDPE fabricate fuel tanks, water and 
gas pipes, snowboards and plastic bottles. LDPE can produce 
corrosion-resistant parts, food storage and pliable parts, while 
uPVC is good for forming pipes, gutters and other building parts. 

MakerBot offers PLA and ABS coils for both the Thing-O-
Matic and the Cupcake. PLA and ABS are easy to sand and paint 
without training or experience.  

FDM offers an entry-level technology for students and 
hobbyist due to its low equipment cost. It is limited to 
thermoplastics. Its deposited layers are about 100 micrometers 
thick and require post process sanding and finishing to eliminate 
visible artifacts. 

3D Inkjet 
3D inkjet methods use inkjet print heads to generate fluid 

drops, which either change directly from liquid to solid, with or 
without radiation curing, or add polymer to powder to form an 
object layer-by-layer. 3D inkjet systems include systems from the 
following companies: 

Fujifilm Dimatix: DMP series; Z-Corporations: Z402 Inkjet 
System; Three Dimensional Printing; Multi-Jet Modeling; Xaar; 
Ricoh; Samsung; UniJet.  

Our presentation will delineate and evaluate the various 3D 
Inkjet systems. 

Polyjet Matrix Printing  
Objet ConnexTM  PolyJet Matrix is a type of 3D Inkjet 

fabrication. Objet Ltd of Israel developed and manufactures it. It 
uses 8 Ricoh print heads, with 96 nozzles per head, each nozzle 
with a 50-micron diameter. Each print material employs at least 
two print heads. The system synchronizes the deposit of different 
acrylic-based photo polymer model materials with varying 
hardness, tensile strength, elongation, response to heat, flexibility 
and color in one simultaneous build. It produces resolution of 
600x600 dpi.  

Robo-casting 
Robo-casting uses computer-controlled deposition of ceramic 

slurries, mixtures of ceramic powder, water, and trace amounts of 
chemical modifiers, through a syringe. It typically deposits the 
material in thin layers on a heated base. Syringe deposited 
materials include: silica, alumina, lead zirconate titanate, 
hydroxyapatite colloidal particles, polymeric, metallic, and 
semiconducting colloidal inks.  It is a relatively inexpensive and 
faster way of fabricating complex ceramic parts.  

Shape Deposition Manufacturing (SDM) 
Shape Deposition Manufacturing combines additive and 

subtractive methods, alternately depositing and shaping or 
machining each layer of support materials to both fabricate and 
assemble items.  SDM permits access to a formed product’s 
internal geometry and the enables the embedding of actuators, 
sensors and other components. It can vary the type and thickness of 
deposited materials and property characteristics of the built 
product. 

Laminated Object Manufacturing (LOM) 
Helisys Inc., now Cubic Technologies, developed LOM, 

which laminates sheets of paper, plastic or metal with a heated 
roller; a laser or knife traces the desired object shape and cross 
hatches waste areas for each layer to facilitate it’s removal. LOM 
involves no chemical reactions. It is useful for large object. The 
paper-based models have a wood-like character. The process is 
relatively low in capital costs.  

Solid Ground Curing (SGC) 
The now defunct Cubital Inc. of Ra'anana, Israel developed 

Solid Ground Curing (SGC), a.k.a. the Solider Process. We include 
a description of its process because the Israeli company Objet 
owns the intellectual property of this technology and that it offers 
an example of a hybrid additive and subtractive system.  

First, the system generated laser exposed photo masks for 
each layer it was to expose. It sprayed a layer of photosensitive 
resin, placed the mask for that layer in between the UV light 
source and the sprayed surface, opened the lamp shutter exposing 
the whole layer at once hardening it, removed the mask, vacuum 
removed the uncured polymer, roller coated wax into the cavity 
left by the removed resin for build support. The whole resin and 
wax layer was then milled and the debris vacuumed away. The 
SGC system then repeated the process for each layer. SGC could 

4 ©2011 Society for Imaging Science and Technology



process multiple parts at once and its large build area of 500 × 500 
× 350 mm enabled the fabrication of larger objects than some other 
methods. It was more expensive and less accurate than SLA. It also 
generated significant waste and required the removal of the 
supporting wax before recovering the fabricated object.  

Conclusion 
Our presentation will also include evaluations, which 

publication space limits for this document, of Ultrasonic 
Consolidation (UC), Very High Power Ultrasonic Additive 
Manufacturing (VHP UAM), Bio-fabrication, Selective Area Laser 
Deposition (SALD), Cold Metal Transfer (CMT), Laser Cladding, 
Integrated Extrusion Deposition and Near Field Electro-spinning. 
Digital Fabrication is a rapidly growing Industry with new 
advances and technologies emerging from research and 
development laboratories frequently. 
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