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Abstract 
Security and forensic printing are needed to connect a 

physical object to the infrastructure—servers, databases, services, 

etc.—that is necessarily deployed for the “downstream” aspects of 

an anti-counterfeiting ecosystem. These aspects include 

investigation (secret shopping, evidence gathering, and analytics) 

and prosecution. For many branded products, including those of 

our company, the overwhelming majority of counterfeit goods are 

produced by a few large-scale counterfeiting operations. 

Therefore, an effective security and forensic printing campaign 

will be targeted at discovering the presence of counterfeiting in 

the supply chain as fast as possible, determining the size of each 

counterfeiter, and prioritizing the evidentiary and prosecution 

plans to eliminate the largest counterfeiters as fast as possible. 

This paper addresses the factors to be considered in successfully 

defining an effective security and forensic printing campaign, and 

early approaches to modeling and simulation of an overall 

ecosystem to optimize the campaign. Broadly, the following topics 

are of importance: (1) cost function; (2) input parameters; (3) 

devices available for deployment; and (4) system outputs. We also 

discuss the manner in which the solution can be deployed for 

products with widely different supply chain, counterfeiting and 

distribution requirements. 

Introduction 
Security printing is printing concerned with embedding 

readable information in a printed area which can later be imaged 

and recovered [1]. Intentional information includes data, often 

serialized, embedded in a barcode or other visible “deterrent”. 

“Unintentional”, or accidental, security printing is associated with 

the item-unique interaction of ink with substrate, constituting 

“forensic” level printing [2]. In addition, large sets of images can 

be used for what is termed “batch forensics” due to the increased 

analysis probabilities associated with the analysis of large image 

sets [3]. 

Most security printing approaches are based on ad hoc 

analysis of the absolute effectiveness of a given approach, or even 

better the relative effectiveness of different security approaches. 

Because these approaches are often based on single-factor costs, 

they do not accurately represent the cost—or the value—of the 

printed marks in the larger “ecosystem”—meaning combined set of 

operations, or tasks—in which the deterrent is deployed. 

In order to address the real value of a deterrent, then, a cost 

function taking into account the overall system costs of 

deployment and use of a security mark must be defined. These cost 

functions are used to optimize the return on investment (ROI) of 

the ecosystem. Overall cost of intervention (additional costs for 

security features, secret shopping, etc.), time to response, time to 

capture and asset inertia—making best use of tools already 

available in the supply chain and at the point of sale—are key 

elements of the cost function. 

In such a cost model, input parameters include counterfeiting 

rate, which can be assessed by a number of indicators: unexpected 

rebate volume, lower-than-expected sales, etc. The number of large 

counterfeiters is important, and this can be addressed by existing 

(image based forensic) means [3]. Layout of distribution network 

and how product sampling is achieved are other inputs. 

Device selection is another crucial part of modeling the 

ecosystem. Data-gathering devices range from the expensive and 

specialized—such as RFID readers and USB-powered 

microscopes—to the inexpensive and commonplace—such as 

mobile cameras. The trade off between these devices for security, 

reliability, and security payload density plays a role in how the 

overall ecosystem recommendation is made. 

Output from the model is the deployment recommendation for 

the brand owner, which can be complicated by the need to 

accommodate multiple products simultaneously. Typical 

recommendations focus on how and when to deploy mass 

serialization, authentication, inspection, forensics and spot checks 

in the supply chain. Product-specific elaborations include the cost 

of counterfeiting—lost sales, returns, future lost sales, liability, 

etc.—in addition to considerations of what percentage of the 

counterfeiting is actually addressable and/or preventable. Further 

considerations include the cost of recall and the finality of 

intervention—counterfeiters who are simply slapped on the wrist 

are likely to be ambidextrous enough to use the other wrist to make 

fake products! 

Ecosystem Model 
The overall ecosystem being modeled is heavily dependent on 

the imaging (reading) devices deployed. Table 1 overviews some 

of the devices deployed along with their locations, agents using 

them, and the cost of using them (fixed and per-use). Five devices 

are considered: inspection cameras placed on the 

manufacturing/printing line; barcode readers used at distribution 

location, supply chain nodes, and/or point of sale; scanners 

(including all-in-one devices) used throughout the supply chain; 

mobile cameras used by end users; and forensic imagers such as 

those described in [2] used by knowledgeable agents throughout 

the supply chain. 

Inspection cameras have high fixed costs but very low per-use 

costs thereafter. Barcode readers are similar—we used pricing for a 

2D barcode reader since these marks are more relevant for current 

supply chains (in which 2D marks are used for mass serialization) 

and indeed at point of sale (two of the largest US retail brands—

Target and Wal-Mart—are fitting all stores or all new stores, 

respectively, with 2D barcode readers). 
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Scanners, including all-in-one devices, multi-functional 

printers (MFPs) and copiers—are inexpensive to purchase, but 

require more time—and typically expertise/training—to use for 

inspection, authentication and other imaging tasks. Mobile 

cameras, on the other hand, are ubiquitous, and as such require no 

fixed cost for use—although the per-use cost is non-zero, since 

there are significant incremental costs over other imaging devices. 

Mobile camera usage is also tied to incentives to customers to use 

them; for example, couponing, gaming and other loyalty programs. 

These incur some costs for the brand owner. Additional costs are 

incurred in the development of imaging software with broader 

capabilities to enable the support of the plethora of mobile camera 

technologies. 

 

Device Factor Data 

Inspection 

Camera 

Location Manufacturing/printing line; 

Re-packaging centers (if 

applicable) 

 Agent(s) Manufacturer, distributor 

 Fixed Cost $4000.00 

 Per Use Cost $0.05 

Barcode 

Reader 

Location Distribution centers; supply 

chain nodes; point of sale 

 Agent(s) Distributor, retailer 

 Fixed Cost $1000.00 

 Per Use Cost $0.10 

Scanner Location Throughout supply chain—

especially at the retailer 

 Agent(s) Retailer, inspector, some 

customers 

 Fixed Cost $100.00 

 Per Use Cost $1.00 

Mobile 

Camera 

Location End users / customers 

 Agent(s) Customers 

 Fixed Cost $0.00 

 Per Use Cost $0.05 

Forensic 

Imager 

Location Knowledge agents; including 

auditors and recall managers 

 Agent(s) Inspector; forensic agents 

 Fixed Cost $50.00 

 Per Use Cost $1.00 

Table 1. Reading devices, factors in the cost model associated 
with each (location, agent(s) using them, and fixed and per-use 

costs), and the values associated with each factor. 

 

As an example of the reading costs, we consider here two 

scenarios: mass serialization for point-of-sale $5 product (called P) 

validation and retailer validation of an over-the-shelf $50 value 

medical (called M) product. We compare equal costs, so in this 

case we assume there are 106 units of P and 105 units of M. The 

total product values are thus $5x106. For P, the costs are for the 

inspection camera ($4000 + $0.05x106) and for the mobile camera 

imaging ($0.05x106), which sum to $104k. For M, the costs are for 

the inspection camera ($4000 + $0.05x105) and for the scanner 

($1.00x105), which sum to $109k. Thus, the costs are roughly the 

same for equivalent values of products M and P. There is one 

difference, however: full compliance is expected in the case of 

product M but full compliance is not expected P (even though the 

costs, in general, cannot be recovered when compliance is less than 

100%). 

These costs can be broke out further. More generally, the 

costs in the ecosystem are: 

 

Cost = Pm*Wm*Cm + Pi*Wi*Ci + Pa*Wa*Ca + Pr*Wr*Cr   (1) 

 

where m represents the costs in the manufacturing/production 

process, i represents the costs in the imaging process, a represents 

the costs in the authentication process, and r represents the costs in 

the recall process. P is the probability of using each of these costs 

and W is a weighting factor to account for differences in how the 

costs are incurred. For example, for the imaging costs of product P, 

Wi = 1/ Pi, since the costs for developing the image analysis 

systems and deploying the customer incentive programs is incurred 

regardless of the overall use rate by the customers. 

Sensitivity of the Model 
Equation 1 provides a general cost model for the deployment 

of security and forensic printing information. It should be noted 

that these models are highly sensitive to modest changes in per-use 

cost, since they are typically deployed for large-volume products. 

In the case of product M, for example, simplifying the process for 

scanning so that the per-use cost drops to $0.50/item drops the 

overall cost for $5x106 worth of product to just $59k, making it far 

more cost-effective than for an equivalent worth of product P. 

In general, then, the sensitivity of the model is greatest where 

the first derivative of the costs/unit are highest—that is, where 

∂Cx/∂n is maximal, subject to x∈{m,i,a,r} and n=number of units. 

To identify the maximum sensitivity, the overall ecosystem must 

be carefully considered. If, for example, Wx ∝  1/ Px, then relative 

sensitivity of P with respect to W must be multiplied by ∂Cx/∂n to 

obtain the overall sensitivity. This means that ∂Ci/∂n for product P 

is 0.0; in other words, it is cost insensitive (unless software system 

or customer incentive costs can be reduced in the large). 

The Model in Action: Recall 
In order to bring into play the full cost model described by 

Equation 1, we consider the costs involved in multiple stages of 

several workflows, the most important of which is recall (removal 

of product from the supply chain), since it is the workflow that 

incorporates all elements of the model. 

For compliance and quality assurance (QA), often the cost 

involved is solely in the manufacturing/production line, and so the 

overall cost model reduces to: 

Costcompliance,QA = Pm*Wm*Cm   (2) 

For supply chain analytics, imaging costs will be incurred by, 

minimally, some distributors and retailers: 

Costsupply chain analytics = Pm*Wm* Cm + Pi*Wi*Ci  (3) 

The cost of determining the presence and level of 

counterfeiting involves an additional authentication cost: 

Costauthentication = Pm*Wm*Cm + Pi*Wi*Ci + Pa*Wa*Ca   (4)  
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Finally, if product recall needs to occur—due to 

counterfeiting, tampering, product repackaging, etc.—an 

additional recall cost is incurred. Thus, recall in general is 

governed by Equation 1 and the workflow in Figure 1. 

 
Figure 1.Block diagram of the recall ecosystem. 

In Figure 1, the security mark deployed is the familiar 2D 

barcode, of which the Aztec [4] and DataMatrix [5] are familiar 

examples. At any of various points in the supply chain, these 2D 

barcodes are read—by inspection cameras in the manufacturing 

line; by barcode readers, scanners and/or mobile cameras during 

the routine imaging; by barcode readers, scanners, mobile cameras 

and/or forensic imagers as part of the authentication; and by any or 

all of the imaging devices (Table 1) during the recall, depending 

on the nature of the supply chain threat. 

Generally, barcode readers will be sufficient for imaging. 

However, during recall, occasional authentication (reading of 

unique imaging information) will need to be performed even where 

all barcode reads are apparently authentic. In this cases, additional 

security marks [1] or forensic analysis of the printing itself [2][3] 

will be needed. This will add to the per-use costs, but the relatively 

low Pa and Pr values will keep the overall ecosystem costs from 

rising. We now illustrate this by example, referring to Figure 1. 

When the need for product recall is defined, the package is 

scanned with the appropriate barcode reader at any node in the 

supply chain. Every unit must be imaged. Each barcode read 

belongs to one of these three classes: 

 

1. Legitimate barcode number, not repeated elsewhere 

2. Legitimate barcode number, repeated elsewhere 

3. Non-legitimate barcode number 

 

Those belonging to class (1.) are the only ones that can be 

safely left on the shelf under any conditions, but further 

authentication must take place to achieve statistical confidence in 

them. All of class (2.) must be removed, even if they belong to an 

otherwise authentic batch (implying they had simply served as the 

source of one or more legitimate numbers for other units belonging 

to this class), simply because they are suspect. All of class (3.) 

must be removed, as they are certainly counterfeits. 

In order to leave a batch of class (1.) barcodes on the shelf 

during a recall, however, we must sample N samples out of batch 

size M, with probability of a false positive PFP for the 

authentication known from previous analysis, such that: 

 

(M/N) * (PFP)N < PFS    (5) 

 

Where PFS is the forensic security probability, or the required 

maximum probability of any samples in the batch being 

counterfeit. For example, if PFP = 0.001, PFS = 10-12, and M = 106, 

then solving for N, we see that only 7 samples must be checked to 

have confidence that less than 1 in 1/ PFS of these samples are 

counterfeit—in spite of a relatively modest value for PFP. This is 

because (M/N) * (PFP)N = 1.4 x 10-14, which is less than PFS. 

Thus, a relatively modest cost is incurred for forensic analysis 

of the entire batch; that is, Pa*Wa*Ca is much less than the first 

two costs, Pm*Wm* Cm + Pi*Wi*Ci. The authentication costs are 

indicated in the lower part of Figure 1, where the decision box “Is 

An Authentication Attempt Due?” is answered by the sampling 

frequency N/M determined from Equation 5. The full authenticity 

workflow is thereafter governed by Pa = (N/M), which in the 

above example is a modest 7 x 10-6. 

However, the right column in Figure 1 describes a set of costs 

not yet discussed. These are the recall costs, or Pr*Wr*Cr. The 
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per-use costs for recall are at first glance high: every non-authentic 

item must be pulled off the shelves. But, we have shown above 

how to contain these costs by quickly assigning batches to one of 

three classes. If any items in a batch are assigned to either class 

(2.) or class (3.), then the entire batch is disposed of with the 

concomitant economy of scale. Note that a “batch” can be a carton, 

pallet, shipping container, or other logical unit, based on the 

relative costs of the items and the authentication. 

Conclusions 
This paper introduces a simple, but highly adaptable—model 

for determining the costs involved in a printing-oriented security 

and forensic ecosystem. Most of the concepts overviewed are 

equally applicable to non-printing based ecosystems; for example, 

RFID and other sensor-based ecosystems. By allowing a term for 

the percentage of samples analyzed during manufacturing, 

imaging, authentication and recall, along with a weighting term to 

incorporate the realities of overall versus per-use costs, the model 

is not limited to linear combinations of costs. 

The paper also provides a breakdown of the reading costs 

involved for five different types of imaging devices, at each of the 

four workflow stages described. These costs are readily 

incorporated into the overall cost model. 

We also provide a description of how to perform sensitivity 

analysis on the model. In order to minimize system costs, both the 

cost sensitivity and the relationship between the probability and 

weighting factors must be considered. 

We then showed how barcode reading by itself can be used to 

quickly assess and assign products to three actionable classes in 

the case of recall. We showed how recall costs can be contained to 

reasonable levels through consideration of the full model. 

Future Work 
The model presented is not complete. Future work will focus 

on tying the reading costs, as outlined in Table 1, into the cost 

structure defined in Equation 1. In so doing, a more substantial, 

and closed-formed, solution to the sensitivity analysis may be 

discovered. 

The reading costs, fixed and per-use, also need to be broken 

down for different device configurations. The examples provided 

herein indicate that fixed costs, such as those for expensive 

inspection cameras, are diminishingly small compared to the 

accumulated per-use costs when large numbers of products are 

involved. The results also indicate that it is, logically, safe to 

increase the per-use costs in proportion to the relative cost of each 

item. Future work should further elaborate on this, and also 

consider the differences between revenue and margin for the 

different products. 

Finally, Equation 5 emphasizes the need for quick assessment 

of multiple-unit validation with “random” full authentication of 

units with frequency (N/M). Figure 2 shows an example of how 

variable data printing can be used to enable such a quick 

validation/authentication of multiple units. Figure 2 represents 6 

small packages lined up in a carton or box. Each package has a 

static set of printed colors in one part of the set of color lines 

printed on the side of the box, allowing rapid validation. Each 

package also contains variable data with low PFP, allowing for 

quick authentication of the lot through sampling a small N. Future 

work will focus on additional ways variable data printing can be 

used to reduce the overall ecosystem costs. 

 
Figure 2.Example of the use of static colors on the side of packaging for quick 

“validation” of multiple units (encircled by vertical/red oval) and dynamic colors 

for individual item authentication in accordance with Equation 5 (encircled by 

horizontal/purple oval). 
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