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Abstract 
Computation of mixing of toners in mixers with complex 

geometries requires extensive computational effort.  Continuum 
models are more practical for such problems in comparison with 
DEM models due to the size of the problem.  Use of continuum 
models requires appropriate material properties for modeling such 
flows. Discrete element model is used to determine the material 
properties for the continuum model.  A simple problem is solved 
first by both DEM and continuum models.  By comparing the 
results of these to solutions, material properties of the toner for 
continuum model are determined.  In this paper, a summary of the 
formulations is provided and examples of a simple experiment of 
toner flow are illustrated. 

 

Introduction 
Proper mixing of toners is a critical problem for improving the 
quality and life of a toner supply.  Proper mixing of old and new 
toners have to be continued in parallel to the printing process.  In 
general a mixing cartridge may contain billions of particles.  
Although it would be desirable to calculate the motion of each 
toner particle, computation of such a problem is not practical for 
design.  Toner particles can be of different shape and size; they 
could be charged at different levels. 
 
Computation of toner flow in mixers with complex geometries 
requires extensive computational effort.  On the other hand, use of 
continuum models for such problems requires appropriate material 
properties for modeling such flows.  Material properties for toners 
under different flow conditions are difficult to measure. 
 
 In this paper, determination of material properties for continuum 
modeling of toner mixing process is presented.  Appropriate 
modeling of toner as a continuous fluid is considered. Depending 
on the properties of the toner and flow conditions, toner particles 
do not behave like an ideal fluid. The motion of toner particles 
occur only after certain level of shear stresses are achieved 
between two toner particles themselves or between the toner 
particles and the walls.  Different types of forces such as VDW 
forces play critical role in determining the above characteristics of 
toner flow. 
 
Material properties are usually defined from experiments.  Here, 
material properties are defined by comparing the simulation of 
toner flows for small samples by both continuum and particle 
modeling.  Discrete Element Method (DEM) is used to solve the 
same problem solved by the continuum model.  Obtained results 
are compared to determine the material properties for the 
continuum model.  This approach also provides a detailed 
understanding of contribution of particle forces to the overall flow 
patterns.  Since the objective is to predict overall mixing of 
considerable number of particles of different shape and size, it is 

expected that continuum model should provide a statistically 
accurate representation of the mixing process. 

Mathematical  Models 
Two models are used in this analysis: DEM model and the 
continuum model. 

 DEM Model 
For each toner particle, equations of motion in three-dimensions 
are integrated in time. 
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Figure 1. Forces and Moments on Toner Particles 

 Irregular geometry of the toner particles is represented by an 
assembly of spherical particles as shown above.  During the 
motion of the particles, contact between two particles is detected 
and normal and frictional forces are calculated. 

 
In addition, Coulombic forces between particles and the electric 
forces due to an electric field are included.  VDW forces and 
image forces add added. Finally, the charging of the toner particles 
are calculated by detecting the contact of different points on the 
surface of toner particles.  The results of this analysis, shows the 
position of each toner particle at each time step of the numerical 
integration. 
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Figure 2. Friction and Contact Forces 

 
Figure 3. Charging of particles by Contact 

Continuum Model 
For the analysis of continuum model we have to solve three-
dimensional Navier-Stokes equations. The main issue is how to 
model the toner in this continuum model.  We start with the power 
law model for viscosity. 

)1( −= nKγη &  
 
Where K is a constant, n is the power index,  γ and η are shear rate 
and apparent viscosity respectively.  The power law is then 
modified to incorporate different flow conditions such as when the 
toner is flowing, when the toner is stationary and when the toner is 
yielding according to the local stress conditions.  The boundary 
conditions are also modified for stick-slip and non-contact 
boundaries. 
 
The specification of material properties for modified power law 
and boundary conditions for different surface conditions are 
obtained by running PASSAGE® DEM codes and comparing 
results with the continuum models. 

Numerical Examples 

Flow of Toner on an Inclined Plane 
As a first simple experiment, toner particles are placed on an 
inclined plane, initially held by a plate placed downstream.  When 
the plate is removed, flow of the particles are calculated from both 
DEM and continuum models.  Under different slopes of the 

incline, flow profiles change in both models.  By matching the 
results of Passage® DEM and continuum material model for these 
cases, material properties are determined for the continuum model.  
Figure 4a, 4b and 4c shows the comparison of Passage® DEM and 
continuum models for determining material properties.  

 

 
Figure 4a. Continuum Model  Results 

 

 
Figure 4b. Passage® DEM Model  Results 

 

 
Figure 4c. Comparison of Velocity Profiles 

Charging Surface 
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Mixing of Toner in a Rotating Drum 
Mixing of toner in a rotating drum is used as an experiment to 
determine the material properties and boundary conditions for 
toner flows.  In the following example, two types of toner particles 
are placed in a cylindrical drum and rotated.  The mixing of the 
particles depends on the rotational speed of the drum as well as 
material properties.  At low speeds toner acts more like a viscous 
fluid.  At high speeds more mixing occurs.  For different levels of 
material and different amount of charging the conditions differ.  
Also the boundary conditions vary for low and high rotational 
speeds.  The stick and slip behavior between the wall and the toner 
changes drastically.  By checking the material model for all such 
conditions, one can determine the material properties for toner 
under different conditions.  Figure 5 shows the comparison of 
Passage®DEM and continuum  for determining material properties. 

 

 
Figure 5. Continuum and DEM Model Results 

 

 

Auger Mixing 
Once, the material properties for the continuum model is 
determined from the drum experiment, the continuum model can 
be used to model auger mixing for design of practical 
configurations.  Again, in the case of augers, many different 
boundary conditions occur and material properties change based 
on the flow conditions. A typical case of the mixing of two toners 
in an auger configuration is shown in Figure 6.  

 
Figure 6, Continuum Model Results of Auger Mixing- Concentration of New 
Toner 

Conclusion 
A continuum model for analyzing mixing of toners is presented.  
The material properties and the boundary conditions for the 
continuum model is obtained by simple experiments..  By 
comparing the results of DEM models with continuum models of 
these experiments for several cases, properties of continuum 
models are defined.  These models can then be used typical toner 
mixing problems where billions of toner particles are mixed. 
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