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Abstract 
The roll-to-roll manufacturing process is believed to 

significantly reduce the cost-price of flexible electronics. Inkjet 
printing of organic-based inks is a major research topic for 
flexible electronic applications because of its advantage of non-
contact deposition and the ease for patterning for various 
industrial processes.  We herein present a study on inkjet printing 
of homogeneous layers of Orgacon™ (Agfa-Gevaert, Belgium). 
Orgacon™ is a water-based dispersion of poly(3,4-
ethylenedioxythiophene):poly(styrenesulphonic acid 
(PEDOT:PSS). This printed layer can be used as a transparent 
electrode for the Organic Light Emitting Diodes (OLEDs) and for 
Organic Photovoltaic (OPV). For OLED lighting applications, 
uniform light emission of large areas is required; the main 
challenge of using inkjet technology is the deposition of highly 
homogenous layers onto flexible non-porous foil substrates. 

In this contribution, some of the fundamental aspects of inkjet 
ink and substrate interaction, and the resulting layer homogeneity 
of the active layer in relation to OLED and OPV-device 
performance are investigated. Combining both theoretical and 
experimental approaches, we studied the inkjet ink rheology and 
homogenous layer formation on a moisture barrier. We have 
enabled to deposit homogenous PEDOT and LEP using 
commercially available inkjet heads. Furthermore, we would like 
to demonstrate the ability of using inkjet printing for fabrication of 
1”by 1”OLED devices, with Agfa high conductive PEDOT:PSS 
and Merck light emitting polymers dissolved in solution. The inkjet 
ink properties and the substrate pretreatment have been optimized 
in order to ensure a stable and robust printing and drying process. 
Moreover, inkjet printed OLEDs will be demonstrated and the 
resulting light emission uniformity, device performance and 
reliability on flexible substrates will be discussed. 

Introduction  
High efficient white OLEDs are typically manufactured using 

vacuum deposition techniques of small molecules onto glass 
substrates that are coated with a transparent conductive oxide, such 
as indium tin oxide (ITO). For high volume and low-cost OLED 
production for lighting applications, vacuum processing is 
comparatively expensive and roll-to-roll deposition techniques at 
ambient conditions are more appealing. The sequential deposition 
and curing of organic-based inks in a roll-to-roll (R2R) 
manufacturing process is believed to significantly reduce the cost-
price per square meter. However, the substitution of traditional 
deposition techniques and applying well-known proven materials 
to a flexible moving substrate is not always trivial. Nevertheless, 
replacement of a 20 Ω/square transparent ITO layer by a high 
conductive PEDOT:PSS layer and printed metal structures in a thin 
film encapsulated flexible OLED with an active area of 150 cm2 
has previously been demonstrated [1], using spin-coating. We also 

reported that for three metal printing processes, inks/pastes based 
on silver nano-particles showed the best compliancy with our 
OLED device structure [2]. Our overall objective is a cost-efficient 
production method for lighting foils based on OLED technology, 
which have a comparable total cost of ownership to traditional 
lighting methods, such as fluorescent tubes. We are currently 
investigating high volume and roll-to-roll compatible solution-
based deposition techniques, such as slot-die coating, screen 
printing, and inkjet printing. The general challenge is to develop 
deposition technologies and capabilities for processing thin and 
highly homogeneous layers of functional polymers (such as 
PEDOT:PSS and light emitting polymers) on flexible substrates 
with a thin film moisture barrier. 

One of our major research topics is inkjet printing of organic 
inks for printed electronics because of its advantage of non-contact 
deposition and the ease for patterning in various industrial 
processes.  Over the past few years, with the development of 
reliable and robust inkjet print head technologies, ink jet 
technology is more and more used in the document/graphics 
productions. This development opens new opportunities for using 
industrial inkjet technology in the high-demanding OLED 
production, where uniform light emission on large areas is 
required. The main challenge of using inkjet technology is the 
deposition of highly homogenous layers of active materials onto 
flexible non-porous substrates.  

In this paper we demonstrate the use of inkjet technology in 
the fabrication of flexible OLEDs, where the active organic layer is 
applied by inkjet printing. As a benchmark, the device 
performance will be compared with spin coated reference devices. 
We will investigate several process requirements for the deposition 
of homogeneous electro-active layers, such as pre-treatment of the 
substrate to modify the surface energy, and ink formulations to 
yield stable inkjet inks with concentration, wetting behavior and 
rheological behavior determined by the boundary conditions for a 
robust deposition process. 

For these purposes we designed OLED devices  on foils with 
a moisture barrier. Our fabrication method can potentially be 
scaled up wider flexible and active OLED lighting tiles using a 
suitable metal support structure on the thin film barrier for the 
current distribution. The ambition is that, with sufficient 
reproducibility and reliability, our processing techniques may be 
applied to the fabrication of flexible OLED lighting tiles, but also 
for systematic moisture barrier analysis of thin film encapsulated 
foil-based OLEDs [3]. 

 

Ink and substrate characterizations 
Organic light-emitting diodes were fabricated on 6” by 6” 

flexible foil substrates, onto which a silicon nitride-based moisture 
barrier was applied. The transparent barrier was based on low-
temperature plasma deposited amorphous hydrogenated silicon 
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nitride films as the intrinsic moisture barrier and was stacked with 
planarization layers to spatially separate defects in these films. To 
limit the ingress of water and oxygen, the above mentioned 
moisture barrier was also applied as encapsulation stack on top of 
the manufactured OLEDs, as sketched in Figure 1.  

 
Figure 1. Schematic representation of a bottom-emitting (ITO-free) OLED on 
foil. 

The (ITO-free) OLED layer stack consisted of a highly 
conductive PEDOT:PSS (Agfa Orgacon™ HILHC5 IJ) that served 
simultaneously as the transparent anode and as the hole injection 
layer. PEDOT:PSS is basically a (99%) water-based polymer 
dispersion. Because of the polymer intrinsic high molecular 
weight, the ink viscosity is not linear as function of shear rate ( 
measured with a Anton Paar Physica MCR rheometer), as shown 
in Figure 2. For most inkjet heads, the shear rate is in the order 
105-106 s-1. The shear thinning effect in the high shear regime is 
demonstrated. In order to obtain a single droplet formation without 
any satellites and a short ligament, we have optimized the 
waveform of the print head. 

Figure 2: PEDOT:PSS ink viscosity as function of shear rate, measured with a 
Anton Paar Physica MCR rheometer. 

Figure 3 shows wetting envelopes of the substrate: silicon 
nitride and metal busbars/lines before and after plasma treatment. 
The polar and disperse coordinates of water, the main component 
in the PEDOT:PSS inks, show the relation between the ink and the 
substrate. If, as for the untreated substrates, the surface energy of 
the substrate is much lower than the surface tension of the ink the 
wetting, spreading, and layer formation will be poor. Large 

differences in the surface energy will cause inhomogeneous layer 
formation or even de-wetting spots. By applying a plasma 
treatment the low surface energies of both substrate materials 
increase and the difference between the two different materials 
becomes smaller, as shown in Figure 3. In such a way, the layer 
formation can be controlled and stabilized. Further improvement of 
the wetting behavior can be obtained by lowering the surface 
tension of the ink by additives, e.g. surfactants or alcohols. 

Figure 3. Wetting envelopes for untreated and pretreated substrate. 

Adding surfactant to the PEDOT:PSS may influence the jetting 
behavior. Depending on surfactant type and concentration, the 
equilibrium surface tension of the PEDOT:PSS dispersion ranges 
from 20 to 40 mN/m. Figure 4 shows the effect of different 
surfactants in a graph in which surface tension is plotted as a  
function of time, measured by a Bubble Tensiometer. By adding 
certain percentage of surfactant, the surface tension of the 
PEDOT:PSS can be reduced and be suitable for the inkjet printing.  

 

 
Figure 4: Effect of surfactant, measured surface tension as function of time.  

 
Inkjet printed PEDOT layer 

For most of the experiments, a commercially available Spectra 
Galaxy PH 256/50 AAA inkjet printhead was used. It has 256 
individually nozzles with a nozzle diameter of 42 µm and nozzle 
spacing of 0.254 mm. The distance between individual inkjet 
deposited droplets is denoted as dot pitch, which can be varied by 
the printing speed and jetting frequency. At a very low dot pitch 
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printing for the fabrication of 1”by 1”OLED devices, with Agfa 
high conductive PEDOT:PSS and Merck light emitting polymers 
dissolved in solution. The properties of the inks, as well as 
substrate pretreatments have been optimized in order to ensure a 
robust printing and drying process. Moreover, inkjet printed OLED 
and OPV devices have been demonstrated. The resulting light 
emission uniformity and the device performance have been 
addressed. ITO-free OLEDs on glass containing inkjet printed 
PEDOT:PSS and inkjet printed LEP layers were found to have 
comparable performance to the spin-coated reference devices. 
With industrial inkjet printing technology, it is feasible to upscale 
the manufacture OLEDs for lighting and signage application and 
OPV foil production.  
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