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Abstract 
A number of structure parameters of textile surfaces and a 

number of jetting fluid parameters define the impact and 

spreading of aqueous droplets on textile fiber surfaces. Parameter 

and dimension analysis as well as advanced CFD and DPD 

modeling results provide data that form a basis for parameter 

analysis. Structure parameters and fluid properties have been 

varied in several computation runs. Experimental verification data 

on fluid distribution is shown for combinations of textile and 

model fluids. 

Introduction 
Impact and spreading of droplets on surfaces occur within a 

process window, defined by 2 dimensionless numbers (Fig. 1)[1]: 

Re - Reynolds number = inertial forces/viscous drag 

We - Weber number = inertial forces/surface tension 
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Figure 1. Process window in Re-We plane for droplet impact on a flat plane [1]. 

It should be said that the physical dimensions in the above 

numbers are based on either the droplet size (for flat planes) or on 

the size of characteristic elements on rough planes. In fact, fiber 

sizes and spaces between fibers actually define the fluid flow 

during impact and spreading. Inertia dominates the vertical flow 

and deformation after impact, whilst capillary (surface tension) 

forces dominate the flow during recoil or spreading. Capillary flow 

in the fiber structure is governed by Darcy’s Law with a wetting 

front separating saturated and unsaturated regions on the fibers: 

there is a disjoining pressure that arises from microscopic and 

physiochemical interactions on the rough or porous fiber surface. 

This results in a sorption model based on the Washburn equation 

for single capillaries. The macroscopic (apparent) contact angle of 

the droplet on the rough (porous) substrate or fiber differs 

considerably from the corresponding smooth and solid surface, 

made of the same species. 

It is difficult to describe the droplet penetration into the 

highly anisotropic structure of the yarns. Wicking phenomena in 

capillaries along fibers strongly perturb the species distribution 

against the application of geometrically uniform print patterns. The 

capillary flow is applied to the outer space of a series of parallel 

solid cylinders, which are twisted. An example of a FEM 

construction of a yarn, with a number of polyester fibers, is shown 

in fig. 2. 

 
Figure 2. Geometry of a FEM construction of a yarn in textile. 

A simplified geometrical model is needed for estimating the 

wicking effect after impact. The fluid is penetrating the yarn in all 

directions and one of them is more distinguished, which is 

observed as the wicking effect. Figure 3 shows the scale of the 

droplet on the yarn surface, and that the fibers can be considered as 

straight. These fibers can be modeled as porous cylinders, which is 

a model of the absorptivity of the fluid in e.g. cotton. Also, the 

large-scale wicking effect on the straight fibers is seen to be similar 

to the wicking on the more or less realistic bent fibers shown in 

figure 2.  

 

 
Figure 3. Simplified computational domain for straight fibers geometrical 

model, marked by red rectangle. 

The deposition process has several different characteristic 

time scales (Fig. 4). Dividing the process into sub processes 

enables firstly to solve them separately and secondly to couple the 

results by setting initial conditions for the processes with the 

results of the previous one. The penetration and wicking (A-B) is 
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analyzed by simulation of the droplet behavior into a group of 

straight non-porous cylinders (Fig. 5). Results from this simplified 

model gives information about the relation between the wicking 

effect and the fluid and structure parameters. 

 

 
Figure 4. Typical times of phases of droplet deposition. (A) Impact 0.1 µs, (B) 

Penetration and wicking 100 ms, (C) Drying 1-10 s, (D) Chemical bonding. 

    
Figure 5. Dimensions used in straight fiber model. The difference between real 

geometry and simplified geometry is small. 

Geometry of the textile is thus simplified (Fig. 5) and the 

influence of curved fiber surface can be neglected.  

CFD analysis 
The CFD model of droplet impact and wicking includes the 

next features: (1) Newtonian flow, (2) Water/air surface tension, 

(3) water/air/fiber contact angle, (4) Gravity. Calculations where 

carried out with a CFD-ACE+ solver. The numerical simulations 

where performed in order to find the most important fluid and 

printing parameters from droplet geometry after impact and 

penetration into the yarn surface. The 3 parameters, which are 

found to be most important in the analysis, are (Fig. 6 thru 8): 

-- Wetting angle: 15°, 45° and 70° 

-- Viscosity: 1, 3 and 6 mPa·s 

-- Droplet volume: 6, 24 and 40 pL 

-- Fiber distance 2 and 3 µm 

Other parameters are: droplet velocity 6 m/s and surface 

tension 30 mN/m. The results are compared for t = 10-40 ms, 

which is a time when steady state is obtained. 

4 Parameters are used to describe the resulting dot shape:    

(1) Height above the textile, (2) Depth of penetration, (3) Diameter 

across the fibers, (4) Diameter along the fibers. 

 

Only the 40 pL droplet reaches then 2nd fiber row, and that for 

low wetting angle of 15°. There is almost no penetration between 

the fibers (high droplet above textile) for high wetting angle of 70° 

and for all droplet volumes. For other wetting angles there is 

deeper penetration between the fibers, and more or less 

longitudinal wicking. 

Similar dependencies can be observed for viscosities of 1, 3 

and 6 mPa·s. The viscosity influences the longitudinal wicking and 

penetration – for higher viscosities this distance is smaller within a 

certain time span. However, it can be observed that for sufficiently 

long time the same wicking may be observed for different 

viscosities. So there is, in principal, only a dependency on droplet 

volume in fig. 7. But wetting angle remains the most important 

parameter, see fig. 6. 

Smaller capillaries lead to deeper fluid penetration and longer 

wicking distance as can be seen from figure 8. Moreover, smaller 

capillaries cause less inter-fiber space that should be compensated 

with more fluid flow into the other directions. 

 

   

  

 
Figure 6. Wetting angle influence for wetting angle 15°, 45° and 70° and 6, 24 

and 40 pL droplet volume with 3 µm fiber distance and viscosity 1 mPa·s. 

   

   

   
Figure 7. Viscosity influence for droplet volumes 6, 24 and 40 pL with 3 µm 

fiber distance and 15° wetting angle. 

 
 

Figure 8. Different fluid distribution for two different distances between fibers, 2 

and 3 µm, other parameters where kept constant (6 pL, 6 mPa·s, WA=15°). 

The final dot shape strongly depends on the analyzed 

parameters. 

CFD analysis shows that the droplet behavior into the group 

of straight fibers is highly nonlinear with respect to varied input 

parameters. This comes from the fact that droplet spreading across 

the fibers is limited by the stepwise choice of the fluid for passing 
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the fiber barrier in order to fill the next fiber spacing and the 

underlying 2nd fiber row. 

DPD Analysis 
The Dissipative Particle Dynamics (DPD) analysis method 

uses a mesoscopic model of hydrodynamics with molecular 

dynamics methods (Monte-Carlo Simulations). It uses a set of 

equations for updating positions of clusters of molecules or 

“lumps” of fluid [2]. Parameterization of the underlying droplet 

impact model has been carried out by adjusting the interaction at 

the water/air/fiber interface. 

  The DPD model of droplet impact and wicking includes the 

next items: (1) Newtonian flow, (2) Water/air surface tension, (3) 

water/air/fiber contact angle. 

The varied parameter of the DPD analysis is: 

-- Wetting angle: 30° thru 170° 

Other parameters are: (1) Viscosity 6 mPa·s, (2) Surface 

tension 30 mN/m, (3) Droplet volume 6 pL, (4) Fiber distance 3 

µm, (5) Fiber diameter 10 µm, (6) Droplet velocity 5 m/s. The 

results are compared for t = 11.2 ms. 

 

 
Figure 9. Simulation result after 11.2 ms of an impact of a 10 pL droplet on a 

flat surface and on a series of fibers (fiber centered and space centered). 

 

 

 
Figure 10. Simulation result after 11.2 ms of an impact of a 10 pL droplet on a 

series of fibers with variation of wetting angle. 

Figure 9 shows the droplet spreading on a flat surface and on 

a series of fibers. The spreading across the fibers is much more 

limited compared to the flat surface case. Simulations for the fiber 

centered case lead to wicking into 2 fiber space channels, while in 

the space centered case there is wicking also into the central space 

channel, so in total 3 wetted space channels. 

Figure 10 shows the droplet spreading on a series of fibers 

(fiber centered) when the wetting angle is varied between 30° and 

170°. The blocking effect of the fibers, in the cross direction of the 

fibers, for the spreading effect in that direction, is obvious for all 

low wetting angles. It is also seen that there is limited wicking in 

the space channels in that cases. Probably is this due to the used 

DPD method for fluid modeling. 

Validation of wicking distance 
Main difficulty in the comparison between numerical and 

experimental results is an accurate measurement of the wetting 

angle of the fluid on the fiber surface. In addition, model analysis 

showed that the wetting angle is one of most important parameters 

in the deposition process. Fig. 11 shows the deposition of 10 pL 

droplets onto a 100% cotton fabric for a droplet spacing equal to 

80 µm. The droplets have no overlap; therefore these results are 

good for comparison with single droplet numerical simulations. 

The black ink has a surface tension of 28 mN/m and a viscosity of 

6.3 mPa·s. Available results give a rough estimation of the wetting 

angle. The wicking distance along the fibers is indicated in the 

images. The experimental values are of the same order as the 

numerical CFD results for wetting angle equal to 70°. 

 

 
Figure 11. Deposition of a 10 pL droplet onto a cotton fabric. Droplet spacing is 

80 µm. 

Species distribution by Raman spectroscopy 
The Raman spectroscopy method was selected as a way to 

specifically observe and measure the functional species 

distribution on the fabric surface as well as inside the fabric 

volume. This method uses a single frequency radiation to irradiate 

the sample. Radiation scattered from the molecule is detected. It is 

known where the bands should be present in the Raman spectrum, 

but in practice one may observe many peaks with uncertain origin 

in the Raman spectrum. These form a unique pattern for every 

chemical compound. The substance identification is then provided 

by comparison of the recorded spectrum with spectra from a data 

base [3]. Raman spectroscopy can not only be used for substance 

identification but also for phase or ionic species identification. 

Additional information can be obtained from Raman maps 

that are collected from a volume of a sample. The mapping time 

depends on the amount of sampling points and the time of 

collecting the spectrum at one point, which is related to the 

chemical character, concentration and purity of the species, and 

also to the quality of the equipment. The map consists of Raman 
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spectra recorded in each of the points and chosen peaks are 

compared. The distribution of species is shown by colors, which 

are connected to the amount of the species. 

 
Figure 12. 40 pL droplet on a polyester fabric: picture of dot from optical 

microscope and Raman map of dot over cross-section along red line. 

Investigated samples of polyester and cotton fabric where 

printed with UV curable cyan ink, containing phthalocyanine blue 

pigment (12 cP, wetting angle 15-25°). The pigment is visible as 

well as detectable by Raman spectroscopy (Fig. 12). Very intensive 

peaks where observed in the spectrum, resulting in short mapping 

times. Moreover, phthalocyanine blue, cotton and polyester have 

separated peaks, which is a favorable condition for measuring the 

species concentration. Geometry was collected for 3 dots (Table 

1), using Dispersive Raman Spectrometer Nicolet Almega. 

Table 1. 40 pL droplet on a polyester fabric: geometry of 3 dots. 

 Dot #1 Dot #2 Dot #3 

Along fibers 150 µm 180 µm 160 µm 

Across fibers 25-30 µm 25-35 µm 45 µm 

Depth >60 µm >60 µm 90 µm 

Comparison with numerical results 
Dot geometry after penetration and wicking appeared to be 

more or less random because of textile geometry. Mean values and 

standard deviations of the dot sizes were calculated for the UV 

curable cyan ink over a number of dots on the textile surface. 

Systematic differences of about 20 µm in the dot size were 

observed between the top and the valley of the yarn, while the 

standard deviation is large (Fig. 13, 14). 

 

Experiment on UV curable cyan ink 8pl and CFD simulation 6pl
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Figure 13. Calculated dot geometry versus measurements: dot size along 

fibers. 

Calculated dot geometry has been plotted until t = 40, 50 and 

80 ms, what is seen to be enough for the stationary situation. 

Wetting angle is the only relevant parameter. Dot size along fiber 

(wicking length) is the best indicator. Calculated dot geometry, 

using wetting angle = 15°, 30° and 45° falls in the range of the dot 

size measurements. 

 

Experiment on UV curable cyan ink 8pl and CFD simulation 6pl
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Figure 14. Calculated dot geometry versus measurements: dot size across 

fibers. 

Dot size across fiber (dot width) is not a good indicator 

because of the fiber barriers that fluid encounter during spreading 

in that direction. Its is obvious that calculated dot geometry for all 

wetting angles falls in the range of the dot size measurements.  

Conclusions 
CFD analysis is an effective tool for identifying critical textile 

structure and jetting fluid parameters in droplet deposition 

processes. Penetration and wicking phenomena into a group of 

straight non-porous cylinders form the base for extensive 

calculations on more or less random fiber layers in complex textile 

geometries. DPD analysis has limited applicability as a tool for 

identifying wicking phenomena in the space channels between the 

fibers. 

Optical microscopy and Raman spectroscopy are essential in 

the determination of species distribution on the fabric surface and 

inside the fabric volume as a way of verification of drop deposition 

concepts to be developed. 

Dot geometry validation has become a challenge because of 

the limited accuracy of dot size measurements. Also the nonlinear 

behavior of the fluid viscosity and surface temperature, and its 

temperature dependency, make it difficult to use adequate input for 

numerical results. 

The rough estimations of wetting angles have been used in the 

underlying paper. Because of its importance to droplet deposition 

processes and being a parameter in numerical simulations, fluid-

fiber wetting angles should be confirmed by e.g. porometry 

measurements with several kinds of fluids and use of Zisman plots. 
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