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Abstract 
A previous 1-D model for the shortening of an unbroken 

drop-on-demand ink-jet ligament has been extended to the case of 

an arbitrary attached tail mass, and can also include extensional 

viscosity (which has ~ 2% effect) as well as linear elasticity in the 

fluid. Predictions from the improved model are shown to be very 

similar to results from 2-D axisymmetric numerical simulations of 

DoD ink-jet ligaments and also to the results of recent experiments 

on Newtonian fluids jetted without satellite formation. 

Introduction 
In a previous NIP paper [1] we based a model for drop-on-

demand ligament shortening on modification of the classical 

Taylor model for the shortening of a long cylindrical ligament after 

break-off. The Taylor speed vT for a fluid thread with diameter D, 

surface tension σ  and density ρ, as depicted in Figure 1(a), is 

given by: 

D
vT

ρ

σ
2=  (1) 

We have now removed limitations affecting computational 

results in the earlier paper [1] and have extended our model to 

include the effects of extensional viscosity. In order to explore 

further whether elasticity does indeed lead to significantly faster 

ligament shortening, as discussed previously [2], we have 

formulated a new version of the original model. In the present 

work we concentrate on modeling the behavior before the ligament 

breaks up into satellite drops [3]. Additional tests of the model 

have been made by comparing it with experimental data for a 

Newtonian fluid jet forming main drops and ligaments which do 

not break up, and also the results of more recent 2-D simulations.  

 
Figure 1a. Taylor model for shortening of a long static fluid ligament [1]. 

 
Figure 1b. Improved model for shortening of a finite ligament [1]. 

The model shown in Figure 1(b) (from [1]) treats a conically-

shaped ligament with an initial finite length L and a linear internal 

velocity gradient between the tail and the head ends, which 

represents the head speed and the initial stretching of the fluid jet 

at the break-off time. The head end of the jet had a mass (M-m), 

where M is the total mass of the jet and m is the tail end mass. At a 

time t after break-off, the instantaneous length was defined as the 

sum of all the axial fluid lengths [1].  

We developed this approach after studying the behavior of 

both Newtonian and slightly elastic fluids: having found a constant 

but higher ligament shortening speed for some fluids than that 

predicted from the Taylor model for a Newtonian fluid, we tried to 

correlate this anomalous behavior with fluid elasticity [2].  

Extended model of ligament shortening 
In the previous analysis the initial acceleration of the tail end 

was finite, due to the inertia of the volume of fluid at the end of the 

cone, which was assumed to be hemispherical and of diameter D 

[1]. We now extend the earlier treatment to incorporate a tail end 

which has β times the mass of a hemisphere of diameter D. This 

leads to a value for the cylindrical tail end acceleration dv/dt, at 

time t given by: 
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Here x is the length of the original ligament that is accreted after 

time t into the tail end mass due to its relative motion; this tail 

acceleration always directs the tail speed towards the Taylor result, 

but at a rate that reduces with time as x and the tail volume grow. 

For β = 1, equation (2) reduces to the original result. For β = 0, 

equation (2) gives infinite acceleration when x = 0, unless v = vT at 

that time, which is most unlikely. Ink-jet fluid motion is usually 

rather slow close to the break-off location: i.e. with initial speed 

v(0) < vT. Figure 2 shows the increasing tail speed for β = 1 and 

v(0) = 0 as predicted from equation (2) for the fluid jet with the 

measured profile shown in Figure 3 [from 1]. 

The timescale required to approach the equilibrium depends on the 

mass attached to the tail. We estimate this time from equation (3): 

Tv

Dβ
≈timescale  (3) 

Applying equation (3) to a massive jet head, characterized by β″ 

for head end size,  ligament diameter D″ and with Taylor speed vT″ 

from equation (1), the timescale to approach equilibrium is found 

to increase as β″ and also as (D″)³/². For β″ ≈ 100β and D″ ≈ 2D, 

typical of the jet shown in Figure 3, the head takes >300 times as 

long as the tail to attain its (lower) Taylor speed and can thus play 

no significant role in jet shortening. Conversely, if the head and 

tail are similar, jet shortening occurs at a speed of 2 vT after a time 

given approximately by equation (3). 
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Figure 2: Increase in tail speed after break-off (for ν(0)= 0 and β = 1) towards 

the Taylor speed of 4.7 m/s as predicted from equation (2) for the ligament of 

Figure 3. The timescale predicted from equation (3) is ~1.3 µs for D= 6 µm. 

 
Figure 3: Radial profile of a viscous (η =  10 mPa s) fluid jet just after break-off 

[1].  Fluid at the tail end of the ligament (at axial position 0) approaches the 

average Taylor speed while the head end travels at ~ 6 m/s. (Image of jet also 

shown to scale.) 

The ligament shown in Figure 3, for a Newtonian fluid with 

viscosity ~0.01 Pa s and a drop speed of ~6 m/s, has an almost 

conical shape, in contrast to the near-cylindrical forms reported [4] 

for viscosity ~1 – 5 mPa s and also observed [5] for a fluid with 

viscosity of 10 mPa s jetted from another print-head design. 

To check our viscosity modeling we have performed 

experiments with the same fluid in another print-head with smaller 

nozzles [5], producing under certain conditions a main drop speed 

of ~ 6 m/s with no satellites. The fluid ligament in this condition 

exhibited a narrowing neck prior to detaching close to the nozzle, 

in such a way as to allow the whole jet to reach the head end 

speed, thereby eliminating any velocity gradient along the ligament 

length. The ligament shortening speed is the difference between 

the tail speed (~11.0 m/s) and the head speed (~ 6.2 m/s): i.e. ~ 4.8 

m/s. The ligament radius of ~ 2.4 µm implies a Taylor speed (for 

an inviscid fluid) of ~ 5.3 m/s: the speed discrepancy of ~ 0.5 m/s 

provides an upper limit for the effect of fluid viscosity of ~10 %. 

 

We can incorporate Newtonian extensional viscosity ηe = 3η0, 

for shear viscosity η0 and density ρ, by extending equation (2) to: 
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Here the rate of change of the ligament length (dl/dt) = – v, so that 

the influence of viscosity is to damp the tail acceleration. When the 

viscous shortening speed becomes constant, equation (4) shows 

that the Taylor speed has a lower value vTη given by the solution of 

the quadratic equation 
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We find that the effect of extensional viscosity for typical ink-

jets is ~ 2% of the Taylor speed given by equation (1). The use of 

simple models, without viscosity, is probably consistent with the 

experimental reduction of < ~10% noted above. 

We have also modeled fluid elasticity by using a linear spring 

equation by modifying equation (2) to: 
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Here the function f(x) is either a constant L, for the case where the 

ligament retains its tension throughout the collapse, or L-x where 

the tension reduces during the collapse of ligament. The constant 

k≥0 is proportional to the usual linear spring constant (but also 

depends on the actual values of the constants L, D and ρ), and has 

dimensions of acceleration as the function f(x) is a length. 

 The form of f(x) chosen to represent elastic ligament tension 

determines the evolution of acceleration given by equation (5). For 

the constant tension scenario f(x) = L, and the Taylor speed is 

raised to a higher value vTk given by the quadratic equation 

kLvv TTk 422 +=  (7) 

This scenario provides a clear indication that higher, constant 

shortening speeds can be produced for unbroken elastic ligaments. 

The timescale for achieving this higher speed is correspondingly 

shorter than predicted from equation (3): the elastic “snap-back”. 

To incorporate the finite length L, the conical shape and the 

initial stretching of the ligament due to the velocity gradient (U/L) 

between the tail and head ends, equation (2) for an initial attached 

tail with mass β times that of a hemisphere of diameter D becomes: 
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The variable p=D′/D defines the conical shape at position x; for p 

= 1 at every x, equation (8) relates to a stretching cylindrical 

ligament, while for U = 0 there is no stretching. Equation (4) 

reverts to equation (2) for p = 1 and U = 0. Variable t represents 

elapsed time, which enters due to the persistent stretching of the 

ligament fluid by the massive head at speed U. In our experiments, 

p > 1 for x > 0, so in the absence of stretching the tail acceleration 

is systematically reduced compared with that for a cylinder. 

Equation (8) can be used to treat the head motion, although 

we actually used a different balance in our previous work [1], such 

that the combined effects of the tail and head end accelerations 

were used to compute the length shortening speed due to surface 

tension of the ligament by time integration over the accelerations. 
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Figure 4: Results from 2-D numerical simulation of a Newtonian fluid ligament 

and from the improved 1-D model for identical conditions at break-off  

The initial conditions for our original computations of 

Newtonian ligament length shortening [1] used a tapering form 

and the tail to head end velocity difference of ~ 6 m/s just after the 

break-off to form a constant velocity gradient in the fluid along the 

ligament length. Therefore the ‘Tail only’ computations shown in 

Figures 3(a)-(c) of [1] are still valid. However, the shortening 

speed for ‘Head + Tail’ computations in [1] was incorrect, as the 

initial condition for the head speed U for the head forward motion 

was set at zero, which is inconsistent with a finite gradient. 

As in our experiments [2] the Taylor speed for the tail end 

was slightly smaller than the drop (head) speed, the physical 

distance between the tail end and the head end must initially 

increase and not shorten because there is insufficient time for the 

massive head to have gained backward speed. In fact the small 

difference between the drop speed and the Taylor speed, together 

with the ligament break-off length, can control how far the last 

satellite drop is positioned behind the main drop. The overall 

ligament length cannot decrease even as fast as the Taylor speed, 

unless either elasticity is present and/or breaks occur along the 

ligament length, with each ligament rupture providing relatively 

low mass (β ≈ 1) tails attached to shortening fluid ligaments. 

Figure 4 shows the results for ‘Tail-only’ and ‘Head + Tail’ 

ligament lengths generated by 2-D simulation codes written by 

Harlen and Morrison [6, 7], together with the improved 1-D model 

predictions for the same break-off conditions: a conical jet shape, 

an initial head speed U of ~ 6.5 m/s and finite internal gradient at 

break-off for ~ 500 µm ligament length. Very similar ligament 

shortening behaviors are produced by these 2-D and 1-D models 

for this fluid with viscosity 0.01 Pa s and surface tension 0.037 

N/m, when identical average ligament widths and head speeds are 

used.  

 Further 1-D modeling (not shown here) reveals sensitivities 

of the unbroken ligament length evolution, in comparison with the 

2-D simulations, to the head speed and the average ligament width. 

The axial velocity gradients in the 1-D model depend on the head 

speed U assumed, whereas the 2-D code and the original images 

[1] reveal that the fluid piles up behind the head at a faster speed. 

Likewise, the geometric ‘Tail only’ behavior appears to mimic the 

dynamic 2-D simulation results only by using the average ligament 

width, rather than the conical width profile seen at the break off. 

Conclusions 
 We have shown by comparison with axisymmetric 

simulations and with experiments involving no ligament break-up 

that our improved model gives a good representation of average jet 

shortening for Newtonian ink-jets. The inclusion of extensional 

viscosity within the 1-D model equations lowers ligament length 

shortening speeds for Newtonian ink-jet fluids by only 2%. The 

improved 1-D model yields very similar results to 2-D numerical 

simulation results for fluids having low shear viscosities typical of 

DoD ink-jet fluids. 

 Inclusion of linear elasticity in the 1-D model can, under 

constant tension scenarios, result in a higher “effective” Taylor 

speed with a correspondingly faster timescale to attaining this. 

Other elastic scenarios produce shortening speeds that are not 

constant but decay with time, in contrast to the observations [2]. 

 Fragmenting Newtonian ligaments also shorten far faster than 

Taylor speed, which still requires proper quantitative explanation. 

We will continue to research the underlying cause(s) of the high 

shortening speeds for fragmenting ink-jet ligaments [2]. 
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