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Abstract 
Laser forward transfer processes are capable of directly 

generating patterns and structures of functional materials for 
the rapid prototyping of electronic, optical and sensor 
devices. These processes, also known as laser induced 
forward transfer or LIFT, offer unique advantages and 
capabilities for digital microfabrication. A key advantage of 
laser forward transfer techniques is their compatibility with 
a wide range of materials, surface chemistries and surface 
morphologies. These processes have been demonstrated in 
the fabrication of a variety of microelectronic elements such 
as interconnects, passives, antennas, sensors, power sources 
and embedded circuits. Overall, laser forward transfer is 
perhaps the most flexible digital microfabrication process 
available in terms of materials versatility, substrate 
compatibility and range of speed, scale and resolution. 
Recently, laser forward transfer of thin film-like structures 
with excellent lateral resolution and thickness uniformity 
using metallic nanoinks has been shown at NRL using a 
technique named laser decal transfer. The high degree of 
control in size and shape achievable with laser decal transfer 
has been applied to the digital microfabrication of 3-
dimensional stacked assemblies and freestanding structures 
for MEMS applications. This paper will describe the unique 
advantages and capabilities of laser decal transfer of 
electronic nanoinks, discuss its applications and explore its 
role in the future of digital microfabrication. 

Introduction 
Lithography and etching processes have dominated the 

micro and nanofabrication areas since the beginning of the 
microelectronics industry. There are considerable challenges, 
however, in adapting lithographic processes to new 
applications requiring processing on plastic or flexible 
substrates, production of small batch sizes and customization 
or prototype redesign. In these cases, the complexity, 
significant capital investment and high operating costs of the 
equipment involved, combined with the limited range of 
materials that can be patterned represent significant 
shortcomings. Furthermore, the use of lithographic 
techniques requiring the vacuum deposition of a thin film 
and its subsequent etching to achieve a desired pattern from a 
given material is not practical for many applications 
requiring the modification, and/or repair of existing 
microelectronic devices or circuits. As a result, there is a 
pressing need for the development of new microfabrication 
techniques and approaches that avoid these limitations. 

 An alternative to lithography is provided by direct-
write techniques. Direct-write techniques are digital 
microfabrication processes that allow the formation of 
patterns or structures under complete computer control. 

Examples of direct-write techniques include inkjet, laser 
chemical vapor deposition or LCVD and laser direct-write or 
LDW. In general, these non-lithographic techniques allow 
the deposition of individual 3-dimensional pixels or “voxels” 
of virtually any type of material at precisely defined 
locations to generate a given pattern or shape with little or no 
material waste. For applications requiring the modification or 
repair of an existing microelectronic circuit or device, direct-
write techniques offer the best chance for success. However, 
most direct-write techniques are not capable of depositing 
patterns of electronic materials with placement precision 
under a micron, with uniform thickness of a few hundred 
nanometers and with feature morphology and size similar to 
the surrounding thin film structures already present in the 
lithographically processed device or circuit. This has limited 
their use and implementation outside the laboratory. 

Laser forward transfer or LIFT is a type of LDW 
process compatible with a wide range of materials and 
substrates. The Naval Research Laboratory (NRL) has 
developed LDW techniques with unique capabilities ranging 
from the non-phase transformative direct printing of complex 
suspensions or inks [1] to the “lase-and-place” of entire 
semiconductor devices [2]. More recently, the use of high 
viscosity metallic nano-inks with LDW has allowed the 
direct printing of thin film-like structures with excellent 
lateral resolution and thickness uniformity [3]. This process 
has been named laser decal transfer or LDT. 

Background 
LDW is not limited by the constraints encountered in 

LCVD or inkjet. The term laser direct-write includes various 
techniques such as laser-based modification, subtraction and 
addition processes that can create patterns of materials 
directly on substrates without the need for lithography or 
masks. In additive mode, laser-forward transfer processes are 
used for the deposition of voxels, i.e. 3D pixels, of metals, 
oxides, polymers and composites under ambient conditions 
onto virtually any type of surface. This laser printing process 
has been used with great success in the fabrication of 
sensors, microbatteries, interconnects, antennae and solar 
cells [4-6]. When combined with other laser forward transfer 
processes, LDW can be used for fabricating embedded 
electronic devices and circuits [7]. LDW is also capable of 
transferring entire devices such as semiconductor IC’s inside 
a pocket or recess in a substrate, similar to pick-and-place 
machines used in circuit board assembly [8]. No other direct-
write technique offers this broad range of capabilities for the 
rapid prototyping of electronic circuits on a single platform. 
A schematic illustrating the basic components of a laser 
direct-write system is shown in Figure 1. More recently, laser 
forward transfer of thin film-like structures with excellent 
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lateral resolution and thickness uniformity using metallic 
nanoinks has been shown by LDT. The high degree of 
control in size and shape achievable with LDT has been 
applied to the digital microfabrication of 3-dimensional 
stacked assemblies and freestanding structures such as 
microbridges and microcantilevers without the use of 
sacrificial layers [9]. 

Experimental  
The laser used for the transfers performed in this work 

was a frequency tripled Nd:YVO4 laser operating at 355 nm 
with pulse energies of a few hundred µJ at kHz repetition 
rates. Typical laser energies used for laser transfer were ~ 2 
to 10 nJ (30 ns FWHM) resulting in a fluence of 8 to 40 
mJ/cm2 at the ribbon.  The substrate was placed on top of a 
computer- controlled X-Y stage motion control system. The 
ribbon was made from a 50 mm x 75 mm glass microscope 
slide to which a suspension of silver nanoparticles (called the 
ink) was applied using doctor blading and placed with the ink 
layer side parallel and facing the receiving substrate 
separated by a 10 to 50 microns adjustable gap.  The laser 
spot was focused onto this ink layer and a series of voxels 
were laser decal transferred by translating the ribbon to a 
new area after each laser pulse. Transfers were performed on 
a variety of surfaces including polyimide, glass and p-type 
Silicon. The surface of the substrates was not pre-treated by 
any special techniques other than rinsing with organic 
solvents  (acetone  and isopropanol) and dried with nitrogen. 
After transfer, the samples were placed in a convection oven 
for 30 min. at 150 °C for thermal curing. 

Optical microscopy was used to characterize the 
transfers before and after curing and also to characterize the 
ribbon before and after the transfers. Once cured, the 
thickness, width and surface morphology of the transfers 
were determined using contact profilometry (KLA Tencor P-
10), atomic force microscopy or AFM (Digital Instruments 
Dimension 3100), and scanning electron microscopy or SEM 
(LEO 1550). The adhesion and chemical resistance were 
evaluated by subjecting the transfers to tape peel tests and 
immersion in solvents (water and isopropanol) respectively, 
and afterwards measuring any changes in morphology or 
electrical properties of the transferred patterns. 
Characterization of the electrical properties of sample lines 
transferred between Au-pads on glass substrates was 
performed using standard 4-probe measurement techniques 
using a Keithley 2400 sourcemeter with 200 µA input 
current.  

 
Figure 1. Schematic showing the basic components of a laser direct-
write system. 

Results and Discussion 
With LDT, the size of the removed material on the 

ribbon is identical to the size of the transfer demonstrating 
that the laser transfer generates a 1-to-1 correspondence in 
size and shape between the laser spot illuminating the ribbon 
and the transferred voxel. The SEM image in Figure 2 shows 
an example of the control in shape and size achievable with 
LDT. This is very important for repair applications, since 
specific voxel lengths and forms can be generated with a 
variable shape aperture, allowing the transfer of a complete 
repair pattern with one single laser pulse. In general, the 
thickness of the transfers depended on the thickness of the 
ink layer on the ribbon and ranged between 100 nm and 1 
µm. For any given thickness, however, AFM analysis of the 
transfers demonstrated the excellent edge definition and 
thickness uniformity of the laser transfers. Such features are 
similar to those obtained by lithographically patterning and 
then etching a vacuum deposited thin film layer of similar 
thickness. To our knowledge, no other laser forward transfer 
technique can generate the kind of thin film-like patterns that 
can be achieved using the LDT process. 

 
Figure 2. SEM image revealing the control in shape and resolution of 
silver nanoinks deposited on a Si substrate by LDT. 
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The use of high viscosity nanoparticle suspensions 
(1,000 to 100,000 cP) as inks for the ribbon plays an 
important role in the ability to perform the decal transfers. To 
date, most of the nano-inks used in laser transfers by other 
groups have been of relatively low viscosities (< 100 cP) and 
the resulting transfers form droplets when released from the 
ribbon. As the droplets reach the substrate surface, patterns 
of varying shape and thicknesses tend to be generated 
analogous to those formed by inkjet, but with surrounding 
debris. By using nanoparticle suspensions of much higher 
viscosities, it is possible to take advantage of shear thinning 
effects that prevent the breakup of the transfer into a 
discontinuous ensemble [3]. In order to characterize the 
electrical properties of the laser decal transfers, multiple sets 
of continuous lines across gold pads on glass substrates were 
printed and then oven cured. Electrical characterization using 
4-probe measurements revealed resistivities for some of 
these lines to be as low as 3.4 µΩ cm, which corresponds to 
about 2.1 times the resistivity of bulk silver metal (1.6 µΩ 
cm at room temperature). The ability to laser decal transfer 
complex fluids and suspensions without degrading their 
properties while maintaining their shape and thickness once 
released from the ribbon is crucial for printing highly 
conductive thin-film-like patterns devoid of discontinuities, 
interfaces or steps. 

Since laser decal transfer is able to generate patterns 
with high edge definition and low debris outside the 
transferred region, it is also well suited for the deposition of 
patterns or lines in close proximity or with small gaps. This 
is very important for fabricating high density interconnects 
and electrodes for organic thin film transistors. For example 
the source and drain inter-digitated electrodes can be laser 
decal transferred onto a pentacene layer for making organic 
thin film transistor devices [10].  

The high degree of control in size and shape of the 
transferred voxels achievable with laser decal transfer can in 
principle also be used to build 3-dimensional stacked 
structures as those required for interconnects. An example of 
this capability can be found in the SEM images on Figure 3. 
In order to fabricate the structure shown in this figure, a 
series of Ag voxels were laser decal transferred onto Au pads 
on the surface of a glass substrate to build two pillars out of 
plane, which in turn supported an Silver interconnect 
rectangular slab deposited across them by LDT as well. The 
3D structure allowed the electrical connection of the outside 
pads without touching the central Au electrode line patterned 
on the substrate. The complete assembly was made by LDT 
without the use of sacrificial layers required to support the 
freestanding rectangular Ag interconnect. Such capability 
represents a true digital microfabrication process by which 
complex geometries can be generated and assembled voxel 
by voxel. This capability is unique and opens the possibility 
for the digital microfabrication of other types of structures 
such as MEMS on low temperature substrates, which are 
impossible to generate by lithographic techniques. 

 
Figure 3. SEM image showing a sample interconnect built by 
LDT on a patterned glass substrate. (a) Top view and (b) 
glancing angle view, revealing the freestanding nature of the 
top Ag interconnect. 

Summary 
Laser decal transfer of high viscosity inks results in 

digitally microfabricated patterns that exhibit extremely 
uniform thickness, show precise edge definition and are free 
of debris. Given that laser decal transfer allows the printing 
of different shapes and sizes, any given pattern can be 
deposited in just a few steps, thus allowing further 
optimization of the writing time. In fact, laser decal transfers 
correspond to a form of digital microfabrication processes 
where the shape and size of each “bit” can be changed at 
will.  The resulting decal transfers are well suited for the 
repair, modification and customization of microelectronic 
circuits, such as TFT-FPD’s, photovoltaics, integrated 
circuits and other semiconductor devices, as well as the 
direct-write of MEMS-like three-dimensional structures. 
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