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Abstract 

The paper presents a new feature of our modular printing 
Platform MicroStack3D [1]. The MicroStack3D system allows one 
to use inkjet printing for new applications. It has been successfully 
used to produce freestanding 3D structures using the phase 
change of an aqueous ink [2] or to print solenoidal receiver coils 
onto cylindrical glass capillaries [3] to mention two of the already 
achieved applications. So far the printed structures had a 
predetermined shape, which was chosen and programmed into the 
system. The work reported here goes one step further by feeding 
information about physical properties of the printed structures 
back into the system. This feedback allows the inline correction of 
a print. A first application is realised by the printing of capacitors. 
A silver ink is printed onto a temperature controlled substrate and 
directly sintered, the resulting change in capacitance is monitored 
on-line and stops the printing process when a certain value is 
reached. The principle of a feedback-loop for inkjet printing, not 
only applies to printing capacitors, but it can be used for the fine 
tuning of any physical property that can be changed by inkjet 
printing like, for example, resistors, inductors, mechanical 
resonators or chemical properties. The modular design of 
MicroStack3D allows the quick integration of measurement 
equipment into the system. 

Introduction 
Inkjet printing deposits small droplets, containing material, 

onto a substrate [4]. In the case of graphical printing these 
materials are the pigments. For the printing of freestanding 3D 
structures the droplets form the building blocks that let the 
structure grow [2], and for printing resonant receiver circuits for 
magnetic resonance imaging (MRI) [3, 5] the inks form conductive 
tracks. These receiver circuits consist of a conductive loop forming 
an inductance (L). The track is made by printing a silver nano-
particle ink onto the substrate and sintering it (U5603, SunTronic, 
GB). By integrating capacitors (C), a resonant RLC circuit is 
formed that improves the signal quality. The capacitors for these 
resonant circuits were fabricated by shaping the overlap area of 
two conductive tracks on both sides of a thin (50 µm) Kapton foil 
that is used as substrate and dielectric. The achievable capacitor 
values can be derived by the following formula: 

 

C = ε0εr

A

d
 (1) 

 
with the overlap area A, the thickness of the Kapton d, the 

permittivity ε0 and the relative permittivity of the material εr.  

In this design, the capacitance is a purely geometrical 
property. To calculate the resulting values of the final capacitors, 
the values for εr need to be known. These values can vary for 
different Kapton sheets, a second source for imprecise predictions 
are boundary effects. Even though the Kapton foil is quite thin and 
therefore the two plates are quite close together the 
inhomogeneous field lines at the edge of the plates mean that the 
circumferential length has an influence on the resulting value. 
Another cause for prediction errors is misalignment. 

 To get an idea of the achievable capacitances and the 
influence of misalignment errors an example is given. For the MRI 
applications in a 9.4 Tesla scanner, 4 pF is a common capacitor 
value. For the 50 µm Kapton the capacitance density was derived 
through test structure to be 0.55 pF mm-2. For the 4 pF capacitor 
this results in an overlap area of 7.27 mm2 a value that can be 
obtained by the overlap of two 1 mm wide tracks for a length of 
7.27 mm. A misalignment of only 100 µm with regard to the 1 mm 
wide track, would result in a 10% error or 0.4 pF.  

All these boundary effects and misalignment problems can be 
evaded in the final product by measuring and correcting the value 
of the capacitor while printing it; similar to the process of laser 
trimming of electronic devices where, for example, the capacitance 
is modified by changing the size of an electrode [6]. The change of 
the capacity per droplet is in the range of a few aF, hence a 
measurement of the value while printing allows one to stop the 
printing as soon as the target value is reached. 

Experimental 
The used printing platform MicroStack3D was designed with 

the aim to assist inkjet printing research in various fields of 
applications. The design of the printer is based on modularisation; 
each subtask has its own module [1]. The printer has a central 
command unit that controls the interactions of the different 
modules. For the results presented here four modules are needed. 
Most of the ability comes through the architecture of 
MicroStack3D. The process can be described by the following 
steps: 

1. A Kapton foil with a prefabricated bottom electrode 
and a connecting track on the topside is mounted 
onto a heated substrate and is connected to a 
capacitance module.  

2. By printing silver nano-particle ink onto the top 
side of the foil, in contact with the existing central 
track,  the size of the connected overlap area is 
increased. 
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3. The substrate is heated to 170°C, thereby sintering 
the arriving silver particle ink directly into a 
conductive top electrode. 

4. The value of the formed capacitor is measured on-
line and transferred to the central control unit 
through the easy expandable data framework of 
MicroStack3D. 

5. Based on the value, further printing is performed if 
needed.  

The four required modules are: a capacitance module to 
measure the current value of the capacitor, a temperature module 
to control the temperature of the substrate at the level needed to 
sinter the silver ink, a timing module that controls the printhead 
and the xy-stage, and a CPU Module that coordinates the whole 
data exchange between the modules. 

To obtain the described functionality with MicroStack3D, the 
only new module was the capacitance module. The built 
capacitance module basically consists of a controlling ATMega 
and two capacitance-voltage-converters (CVC) ICs (Figure 1). 

 
 

 
Figure 1. Capacitance Module offering three different measurement methods. 
Two are relative measurement, that detect the change of a capacitor relative 
to a reference. The third method is an absolute one. 

Two different CVCs are used to increase the range of 
measurable capacities, additionally an RC circuit, based on the µC 
is implemented. The most accurate of the three options is an 
AD7745 from Analog Devices (Norwood, Massachusetts, USA), it 
can detect changes in capacitance of up to ±4 pF. The chip gives a 
21-bit digitalised signal over I2C and has an accuracy of 4 fF. 

The second chip is the comparative sensor CAV424 from 
analog microelectronics (Mainz, Germany). The IC measures the 
capacitance of one capacitor relative to another one, the 
measurement capacitor must be between 105-200% of the 
reference capacitor. The device can measure capacities in the 
range from 10 pF to 2 nF. The created output signal is a voltage 
level, that is analysed by the ATMega32. 

A third option is the use of an RC circuit, it is the most 
flexible one, the measured capacitance is charged over a known 
resistor and the time to reach a certain voltage is measured by the 
ATMega. The voltage at the capacitor, U(t) follows this equation  

 

U(t) = U0(1− e
− t

RC )  (2) 
 
with U0 being the 5 V from the output pin of the ATMega. 

The time passed till t equals RC, is measured, which indicates 
when the capacitor is charged by e-1 or �63%. As R is known 
precisely, C can be calculated. Using different values for R the 
measurable range can be adjusted. The resolution of the signal is in 
the time domain and can therefore be measured accurately. The 

value measured by one of the three approaches is transferred from 
the capacitance module using the data framework of 
MicroStack3D to the Display-CPU module. From there it is sent to 
the timing module, which decides if another droplet is needed and 
where to place it.  

To connect the capacitors with the CVCs, short cables should 
be used, as all cables exhibit a certain capacitance per unit length. 
To keep the cables short the capacitance module should be close to 
the substrate, therefore, the PCB from Figure 1 is used without a 
box and placed directly next to the stage. 

As the estimation of the capacitor’s value with a certain 
printed overlap area is fairly precise, feedback controlled printing 
is only needed at the end. Hence, like for the laser trimming, 
standard devices are fabricated that are then modified. In this case 
instead of printing the whole capacitor area, plate capacitors are 
prefabricated using standard flexible PCB technique. To maximise 
the flexibility the prefabricated capacitors consist of 2 mm x 2 mm 
counter electrodes and different sized metal patches as top 
electrodes. Figure 2(a) shows different versions of these patches 
on the top side of the substrate. In the middle of each capacitor two 
long tracks can be seen that lead to the contact clamps. The left 
one is the central track for the top electrode. The right track is for 
the bottom electrode that is connected through a via. 

 
 

 
                                        (a) 
 

 
                                          (b) 

Figure 2. Top and bottom electrodes fabricated on a flexible Kapton foil using 
a standard process by Contag. The top electrodes can be modified by inkjet 
printing silver ink to connect the metal patches to the central track. 

Figure 2(b) shows the bottom electrodes that cover the full 
4 mm2 with the exception of a central area. This space is at the 
position where the central track runs on the top side, by leaving 
this metallisation away the offset capacitance is minimised. 

The tuning is done by connecting patches to the central track, 
thereby increasing the overlap area by the size of the patch and the 
inkjet printed connecting metal part. The inkjet printed silver ink is 
only conductive if sintered at 130°C. Therefore, the printing 
platform keeps the PCB on the substrate at 150°C, thereby 
sintering the arriving droplets immediately. After sintering (�1 s) 
the droplet becomes part of the top electrode enlarging the size of 
the electrode. 

To inkjet print the SunTronic silver ink, a 200 µm nozzle 
diameter PipeJet printhead from BioFluidix was used (BioFluidix 
GmbH, Freiburg) [7]. The printhead is a 200 µm wide plastic tube 
that is actuated by a piezo that squeezes a small droplet of ink out 
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of the tube. These printheads were chosen, because they are cheap 
and operating the printheads with silver ink closely over the heated 
substrate might lead to accidental, non-reversible sintering inside 
of the nozzle. The use of such a fairly thick nozzle has a second 
advantage. The copper layers of the prefabricated PCBs have a 
thickness of 36 µm, hence the printed silver ink has to overcome 
that step to form a stable electrical connection. The ink has a silver 
content of ~2%, even for a 200 µm diameter droplet this only 
gives a few microns of silver, smaller droplets give respectively 
less silver per droplet. 

Results 
Before using the capacitance module in the printing process it 

is tested and calibrated. The RC circuit is used to measure values 
from a capacitive decade, which is connected to the setup. Figure 3 
shows the results of these measurements. The measured values are 
on a straight line and the error bars are small, hence the 
measurements are both accurate and reproducible over a range of 4 
orders of magnitude.  

 
Figure 3. Measurement of a capacitive decade using the RC circuit of the 
Capacitance module. The linearity of the results shows that the 
measurements are accurate, while the small error bars indicate the good 
reproducibility. 

In a next step the system was used to measure the capacitor 
that is modified by connecting the patches on the prefabricated 
capacitor through inkjet printing. One of the prefabricated 
capacitors is placed on the heated aluminium substrate. To reduce 
unwanted effects by the aluminium substrate a 25 µm thick Kapton 
foil is placed in between the substrate and the PCB. The thin foil 
separates the bottom electrode of the capacitor from the substrate 
but does not prevent the heatflow from the substrate to the 
prefabricated PCB. To further reduce side effects the first overlap 
area is obtained by closing the gap in the bottom electrode, thereby 
causing an overlap area of 20 mm2 from Figure 4. Now the 
capacitor is placed onto the 25 µm foil with the bottom electrode 
facing the substrate. The prefabricated PCB is aligned under the 
printhead and mechanically fixed to the substrate. 

The metal patches were connected one after the next. After 
each inkjet printed connection the ink was given one minute to 
sinter and form a conductive connection. In Figure 4 the measured 
capacitor values are plotted against the overlap area that was 
connected to the central track at the time of measurement. The 

overlap area was determined, including the printed connection, via 
optical inspection. 

 

 
Figure 4. The value of the capacitor scales accurately with the increasing 
overlap area of the electrodes. 

The highly linear increase of the capacitor value with the 
increase of the top electrode area shows that the approach with the 
metal patches gives the same capacitance per area as the inkjet 
printed parts. Therefore, the use of standard prefabricated 
capacitors with connectable metal patches reduces the production 
time without reducing the flexibility or linearity. 

The values were sent to the computer by the timing module, 
therefore the values first needed to be transferred from the 
capacitance module to the timing Module. In the timing module 
the value can also be used to control the printhead behaviour 
instead of sending them to a computer. This full feedback control 
was not yet tested because the printhead started to leak ink due to 
the heat radiation of the substrate that lowered the ink’s viscosity. 
A pressurisable reservoir that prevents that leaking is under 
development. 

Conclusions 
The functionality needed to use inkjet printing within a 

feedback controlled production process was implemented and 
tested for the example of tuning capacitor values. The functionality 
of the logical structure was tested and works properly. The 
approach could also be applied for the trimming of resistors, but as 
the resistivity of the sintered silver is dependant on sintering 
temperature and time, the measured value might change during 
some other post-processing or during operation. For the capacitors 
this is not a critical concern, as the capacitor value hardly depends 
on the resistivity of the plates.  

Outlook  
The possibility of using measurement results directly to drive 

the process allows for a wide range of research topics. This 
approach can be adapted to all fields of applications where inkjet 
printing modifies a measurable property. It can be used for the fine 
tuning of, for example, resistors, inductors, resonators and 
chemical properties. 
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