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Abstract

The HP T300 Color Inkjet Web Press uses two identical print
engines capable of printing full variable data at 400 fpm and
1200x600dpi on a 30" wide web. FEach print engine prints four
colors of ink (CMYK) and Bonding Agent (BA). Each of the five
inks employs two print bars in tandem in an arrangement that
provides nozzle redundancy. Each of the 10 printbar contains
seven 4.25” thermal inkjet printheads with over ten thousand
nozzles each. This massive array of nozzles consumes 35 Giga bits
of nozzle firing data per second.

The data flow starts with the Digital Front End which
provides the interface to the press, processes job ticketing and
decomposes incoming PDF files into small chunks that are then
concurrently processed by a scalable array of raster image
processors (RIPs) built on high-performance blade servers. This
solution allows RIPs to be tailored to meet any demand required
by a customer’s print job.

The raster images are then compressed and buffered before
being delivered in print sequence order to the two print engines.

The print engines partition the incoming raster images into
bands called slices; each slice covers the width of one Printhead
plus some overlap area. Image processing hardware runs in
parallel for each slice transforming the compressed CMYK
continuous tone raster into real time nozzle firing instructions.

The result is a scalable image processing architecture that
extends to wider presses by simply replicating the basic hardware
building blocks across the web.

Scalable Printing Architecture

The HP T300 Color Inkjet Web Press uses 4.25-inch thermal
inkjet printheads built with HP Scalable Printing Technology.

The printhead shown in Figure 1 consists of five thermal
inkjet printhead die placed on a ceramic substrate and a backend
assembly that provides mechanical alignment, ink pressure
regulation, and electrical interconnections.

The printhead has two columns of 5,280 nozzles, each
producing a 4.25-inch swath with 1,200 nozzles per inch. This
gives a printing resolution of 1,200 dpi across the web.
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Figure 1 Scalable Printing Technology
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Printheads are physically arranged into printbars that span the
width of the web as shown in Figure 2. Seven printheads are
needed to cover a 30” wide web. Printbars are modular and can be
added along the web to build different writing system
configurations.

A monochrome press can be built with a single printbar,
while a color press would have at a minimum 4 printbars one for
each of the CMYK primary colors.

The T300 uses two printbars for each color for increased
nozzle fault tolerance and load sharing. This allows a 600 dpi pixel
in a given dot-row to be printed by any one of eight (8) nozzles,
providing the benefits of multiple-pass printing in a single pass.

Figure 2 seven printhead printbar for a 30” wide web.

Bonding Agent

The HP T300 series Inkjet Web Presses deliver high print
quality and durability on uncoated stock by pre-printing a colorless
liquid, called Bonding Agent, into those pixels that will receive
ink. Bonding Agent is applied by two additional inkjet print bars
before colored inks are printed.

The Bonding Agent chemically reacts with the pigment inks
to rapidly immobilize pigments at or near the paper surface to
control ink spread and penetration, this results in increased optical
density and reduced feathering and strike-through. Bonding Agent
also improves pigment adhesion to the paper fibers for better print
durability.

Nozzle Data Rate

To print at 400 feet per minute (80 inches/s) with a down web
printing resolution of 600 dpi, firing data for each of the 10,560
nozzles has to be fed to each printhead 48,000 times per second.
This amounts to a data rate of 500 mega bits per second per
printhead.

Each of the two print engines needed for duplex printing
employs 70 printheads arranged in 10 printbars as shown in Figure
3. Such a writing system contains 739,200 nozzles that consume a
total of 35 Giga bits per second per print side.
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Figure 3 Scalable Print Engine Architecture of the T300 Inkjet Web Press

Scalable RIP Architecture

The data pipeline challenge starts with the Digital Front End
which provides the user interface to the press. The DFE processes
job ticketing and decomposes incoming PDF files into small
chunks that are then concurrently processed by a scalable array of
raster image processors (RIPs) built on high-performance blade
servers. This solution allows RIPs to be tailored to meet any
demand required by a customer’s print job.

A monochrome book printing application can use as few as 8
RIPs, while a full-color 100% variable Direct Mail application
may use over 100 RIPs to produce 2600 A size color pages per
minute.

The RIPs apply the imposition instructions to generate web
wide raster images called frames. RIPs also perform color
management and ink limiting by applying an ICC profile that is
selected on a per job basis. The result is a 600 dpi continuous tone
raster frame that is then compressed using a visually lossless
compression algorithm leveraged from the Indigo presses. Typical
jobs achieve a compression ratio of at least 15:1.

The Press Interface Adapter and Frame Broker interface the
Digital Front End and RIPs to the print engine by buffering frames
from the RIPs and delivering them in print sequence order.
Buffering allows completing the rendering of frames in any order
thus maximizing RIP performance. Also when multiple copies of a
job are to be printed, the job needs to be RIPed only once.

Standard 10 Gbit Ethernet links are used to transfer the
compressed raster between the different sub systems.
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Figure 4 Scalable RIP architecture

Scalable Processing Architecture

The design philosophy behind the scalable printing
architecture based on the scheme of spanning the web with
overlapping printheads extends also to the scalable image
processing hardware.
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As shown in Figure 5 an image wider than a single printhead
is partitioned into overlapping print swaths, called slices [1][2].
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Figure 5 Slicing an image

Printed with tandem printbars for each color (and bonding
agent), each slice is 5% die wide (4.7 inches) to allow overlap
between the printbars. Neighboring printheads spanning the web
print in an overlap zone for seamless stitching. Modular image
processing hardware and firmware components run in parallel for
each slice. These components are then replicated across the web to
build wider presses.

Front End Pipeline

The image pipeline is split into two distinct steps. The first
step is known as the front end pipeline and is performed by the
Engine PCA. Here a slice of compressed raster is decompressed,
linearized and halftoned into 600 dpi, 3-level pixels for each of the
CMYK color planes. If bonding agent is used, the CMYK planes
are then merged together to generate the bonding agent plane. The
halftone data for each slice and color plane is then transferred to
the backend pipeline.

As there are no data dependencies among slices and the
compression algorithm allows the raster rows of the frame to be
indexed in the compressed domain, the slices can be processed
concurrently by each of the engine PCAs.

When printing at 400fpm, each 4.7 inch slice consumes 137
million pixels per second for each of the colors. Each Engine PCA
actually processes 4 colors plus bonding agent for 2 slices or a
total of 1.37 billion pixels per second.

The Engine PCA has a PCI express interface and form factor.
To build a 30” web press 4 such PCAs are required per print side.
The PCAs are arranged inside an HP Proliant server.

Back End Pipeline

The second step known as the back end pipeline is performed
by the Color Plane Processor PCA. In this step nozzle firing
instructions are generated in real time for each of the printhead
dice.

« Modular image processing hardware for 2 slices
Components repiicated aiong the web

Figure 6 Modular processing hardware for 2 slices and 5 colors
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This component is also modular, being replicated down the
web to support presses with more printbars. The hardware
configuration for a a 2-slice, CMYK and Bonding Agent writing
system producing a print swath for two slices (about 8.5 inches
wide) is shown in Figure 6. Each CPP processes one color plane
and sends the remaining planes to the next CPP.

A 600x600 per inch halftone pixel is formed from two
subpixels, each 1/1200” across the web and 1/600” along the web.
Printheads can place a dot in either or both subpixels. Halftone
level 0 is an empty pixel. Level 1 uses one drop of ink by printing
a dot in either subpixel. Level 2 uses two drops of ink, one in each

subpixel.
%1 /600”~‘
T [
1/1200” . 1
or
1/1200”
iy N |
Level O Level 1 Level 2
(1 drop) (2 drops)

Figure 7 Halftone Pixels 3 levels per color

For each printhead die, the back end pipeline reads the
corresponding portion of the halftone image that is to be printed by
that set of nozzles. The physical position of the die is taken into
account to align the dots on paper relative to the other printheads
with a 1,200™ of inch accuracy. Then the nozzle masking process
determines which of the 8 nozzle(s) will actually be used to print
each pixel. To perform this, a per nozzle 2 bit mask is combined
with the 2 bit halftone pixel and a decision of whether to fire a
drop is made. For a given halftone pixel, this process is repeated 8
times, once for each of the nozzles that can print it.

Figure 8 is a schematic representation of the tandem printhead
arrangement. Printheads 1 and 2 are stationary and the web moves
under them. Nozzles in each column (e.g., “a”, “c”, “e”, etc.) are
spaced 1/1200-inch apart to print at 1,200 dpi across the web.

Nozzles “a” and “b” on Printhead 1 print in the same dot-row.
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Figure 8 Nozzle Redundancy example printing 2 drops per pixel

Aligning nozzles “a’” and “b’” on Printhead 2 with “a” and “b” on
Printhead 1 gives four (4) redundant nozzles (e.g., “a”, “b”, “a’”,
and “b’”) that can print a dot in any given 1200-inch dot-row.

In Figure 8, the neighbors to any dot are seen coming from
different nozzle columns and different printheads. This
arrangement of dots is continuously randomized during printing to
further suppress any periodic patterns resulting from using a
particular combination of nozzles. This process is called nozzle
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cycling, and it provides suppression of nozzle errors comparable to
multiple-pass printing in a single pass of the paper under the
printheads.

Each Color Plane Processor PCA processes 275 million
halftone pixels per second and generates 2 Giga bits of real-time
nozzle firing data per second that is delivered to four of the
printheads through a fiber optic link.

The T300 web press requires 20 Color Plane Processor PCAs
per print side. The PCAs are arranged in an industry standard
compact PCI rack.

Printhead driver

At the receiving end of the optical fiber resides the Printhead
Driver PCA that is located inside the printbar. This PCA de-
multiplexes the incoming data stream and interfaces to each
individual printhead die.

Printhead power and control signals are also provided.

Firmware

The modular hardware just described is driven by a scalable
firmware architecture that is also modular in nature. Several
different C++ components control the different steps of the data
pipeline and manage the printheads themselves. These software
components are then replicated to match the actual hardware
configuration.

Summary

The combination of modular printbars and imaging hardware
and software components enables building digital presses with
different writing system configurations that can serve different
applications with minimal design effort. All it takes is to replicate
the basic building blocks.

An example is shown in Figure 9 for a T300 Inkjet Web Press
in a 30 inch full color and duplex configuration.

Figure 9 Components used by the T300 in a full Color Duplex configuration
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