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Abstract 
Printed electronics is a compilation of significant 

developments that have contributed to changing the traditional 

perception of printing using paper. Printed electronics is 

characterized by employing common printing techniques, such as 

inkjet, gravure and screen printing, to print special functional inks 

on low-cost materials, such as plastic, paper and glass. These 

techniques open the doors for a wide range of low-cost 

manufacturing applications from flexible displays, transistors, 

RFID tags to interactive cloth. 

This paper summarizes the overall developments of Printed 

electronics and then focus on Electronic paper (or E-paper) as one 

of its applications. In particular, this paper talks about what parts 

of printed electronic developments that contribute to the 

developments of this promising flexible display that mimics papers 

properties in terms of flexibility and readability and can update its 

contents via wireless connections. 

Introduction 
Printed electronics (PE) (also referred as Plastic electronics or 

Flexible electronics) has gained importance due its capability to 

utilize flexible materials such as plastic, paper, etc. to produce 

functional electrical devices at low cost. These devices or circuits 

are characterized by, beside flexibility, thin-film, lightweight, low 

power consumption and transparency. 

PE is performed by printing several functional layers on top 

of each other, each with a specific position and with high -

resolution. Therefore, different printing methods are operated for 

producing such electronic devices. The selection between them is 

made based on their resolution, speed, materials that are used and 

the requirement layers properties [1]. For instance, conventional 

printing processes (or mass-printing) such as gravure, flexo and 

offset are used for roll-to-roll printing and can achieve high 

printing resolution (20 µ), inkjet and screen printing are suitable 

for sheet-fed printing and they can achieve a resolution between 50 

µ to 100 µ [2]. Consequently, due the employment of different 

printing methods, PE can be processed in low temperature 

conditions and it does not affect the environment since its use 

flexible material such as plastic or paper. 

The printed ink consists of organic conductive or 

semiconductive polymers in liquid-based form. The viscosity of 

the ink needs to be specified depending on the printing method to 

achieve high printing quality, for instance low-viscosity inks are 

more suitable for inkjet or gravure. Moreover, additives are 

included with the functional ink in order to enhance their 

performance in terms of viscosity, surface tension, adhesion, etc [2].  

Various applications have been developed at low 

manufacturing cost, such as flexible displays, solar cells, RFID 

tags, batteries, etc. due to the ability of PE to integrate flexible 

electronic circuits into their structure.  Organic Thin-Film-

Transistors (OTFT), for example, are integrated on flexible 

substrates as part of a special display drive circuit. This technique 

significantly reduces the manufacturing cost of constructing 

electronic paper's backplane. This study therefore demonstrates the 

important fundamentals of electronic paper structure. 

E-Paper 
Electronic paper (or E-paper) is considered one of the 

promising applications of PE due to its features that mimic printed 

paper. It employs a special ink (i.e. Electronic ink) that printed on 

flexible substrate such as plastic. The result is a flexible 

lightweight display device with a wide viewing angle and high 

contrast ratio at low manufacturing cost. Furthermore, demanding 

power when changing the displayed image makes e-paper consume 

low energy levels [3]. 

Figure 1 demonstrates the general schema of e-paper 

structure. The basic layers are substrate, backplane, frontplane and 

encapsulation.  

 
Figure 1 E-paper device structure 

Substrates 
The flexible substrate is the bottom layer of e-paper display 

device. It could be metal foil, plastic (or organic polymers) or 

flexible glass. These substrates are thin, optically transparent and 

have a smooth surface that helps to reduce the sensitivity of device 

film's electrical function, which is increased by decreasing of the 

film thickness. In addition, they are characterized by having low 

CTE (coefficients of thermal expansion) along with their 

dimension and thermal stability. They also act as a barrier film for 

permeable water and oxygen vapors, which ensures long shelf life 

for a device. Moreover, they facilitate supporting the device layers 

due to their higher elastic modulus. They can be used as electrical 

insulating substrates or as conductive or semi conductive substrates 

based on their material structure. [4] 

Backplane 
This layer can be thought of it as the sole of the electronic 

display device as it consists of the display driver circuits. It can be 

either a passive or active matrix backplane. The Active-matrix 

backplane (AM) is the most common used with flexile e-paper 
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displays due to its high refresh rate and lower power 

consumption[5]. It consists of an array of Thin Film Transistors 

(TFT) where each pixel in the display device is addressed by at 

least one single TFT.  

Basically, a TFT consist of four main layers: source and drain 

electrodes, a thin film of a semiconductor, an insulator or gate 

dielectric, and a gate electrode on a supporting substrate layer [6]. 

Figure 2 illustrates a cross section design of two different 

depositing methods of TFT layers. The TFT performance is 

affected by the selection of its layers deposition structure. 

 
Figure 2 Two different TFT layers constructions: (a) Top-contact device and 

(b) bottom-contact device 
[7]

 

Various technologies were used to develop AM backplanes; 

each characterized by the substrate material and the semiconductor 

that is used, which influences the TFT manufacturing conditions.  

Substrate 
Recently, plastic materials (such as PET and polyester) and 

papers have become dominant materials for flexible AM backplane 

fabrication. These low cost materials are suitable for high speed 

roll-to-roll processes and they serve other critical properties in 

flexible displays, such as lightweight and ruggedness. Other 

substrate materials such as glass, steel foils or fabric are still being 

considered. [8] 

Semiconductor 
The thin semiconductor layer can be in different form such as 

amorphous, polycrystalline or organic. Hydrogen amorphous 

silicon (a-Si:H) has been the most widely used semiconductor for 

TFT fabrication on flexible substrates since 1990. a-Si:H is 

characterized by its ability to be deposited in a thin film on various 

substrates materials. Further, utilizing Plasma-Enhanced Chemical 

vapor disposition (PECVD) process to deposit a-Si:H at low 

temperature of 150° C or less assist reducing manufacturing cost 

and contribute adapting a-Si:H in large-area electronics and display 

applications. [9]  

Another form of silicon semiconductor is Nanocrystalline 

silicon (nc-Si). As with a-Si:H, nc-Si is also deposited using the 

PECVD process. However, it has more advantages over a-Si:H, 

such as higher electron mobility, higher stability and it is easier to 

fabricate. [10] 

Polycrystalline silicon (Poly-Si) is another promising 

semiconductor as it has a higher mobility (or device switching 

speed) than a-Si. PECVD, solid-phase crystallization (SPC) or 

Low-pressure chemical vapor deposition (LPCVD) process are 

used at a high temperature of 300° C to deposit poly-Si on glass. 

However, high temperature has a negative influence on plastic and 

paper substrates as it could lead to mechanical stress, therefore, a 

laser crystallization process is used to deposit poly-Si at low 

temperature of 150° C. [11] 

The use of organic semiconductors was reported back in 

1983. Since that time, numerous developments and enhancements 

were applied to organic TFT (OTFT), making it the dominant 

technology for promising organic electronics. The most important 

advantage of using organic-based materials over silicon based 

materials is the ability of fabricating OTFT in a non-controlled 

room at atmospheric temperature, which is suitable for flexible 

polymer substrates (plastic), in high speed roll-to-roll processes. 

Despite the lower electronic efficiency of organic electronics over 

the silicon-base electronics, their lower manufacture cost and 

operational lifetime contributes using them in many low-function 

applications (such as AM backplane) to replace expensive silicon 

materials. [12]  

Organic materials (Figure 3) that are used as active 

semiconductors can be small molecules (e.g. pentacene and 

rubrene), conjugated polymers (e.g. polythiophenes, PPV, P3HT or 

polyacetylene), hybrid organic-inorganic structures or molecular 

semiconductors (e.g. nanotubes). [13] 

 
Figure 3 Examples of smaller molecular and conjugated polymer 

semiconductors 
[8]

 

Basically, organic semiconductors are fabricated in either 

vapor-phase process or solution-phase process [9]. Vapor-phase 

techniques are used for depositing the insoluble small molecular 

semiconductors, which include, for instance, vacuum thermal 

evaporation or organic vapor phase deposition (OVPD). On the 

other hand, dip coating and spin coating solution-phase process are 

utilized to deposit thin films of conjugated polymer 

semiconductors. The development of the solution-phase materials 

has contributed in utilizing common low-cost printing techniques, 

such as inkjet, flexo, screen printing and gravure printing processes 

to print organic semiconductors in a continues high-speed 

process.[8] 

Dielectrics 
This layer serves as an insulator between the active 

semiconductor and the gate electrode. Therefore, some 

requirements need to be achieved in case of choosing the 

appropriate dielectric materials as it influences the TFT 
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performance. For instance, dielectric film thickness, roughness, 

dielectric constant, needs the ability to control leakage and 

withstand the TFT fabrication process. In addition, since it’s 

located between the semiconductor and the gate electrode which 

creates two interfaces, some interface treatments are utilized in 

order to enhance the TFT performance. [14] 

The selection of the gate dielectrics materials must be 

compatible with the semiconductor that is used. For instance, 

silicon dioxide (SiO2) and silicon nitride (SiNx) are example of 

inorganic dielectrics materials that are used with an a-Si TFT 

backplane. Vapor-phase deposition methods are utilized to deposit 

this kind of dielectric material. On the other hand, organic polymer 

dielectric materials are used with organic semiconductors. Most 

widely used are poly (vinyl alcohol) PVA and poly (vinyl phenol) 

(PVP) with OTFT. The most important feature of using a polymer 

dielectric is that they deposit using inexpensive solution-phase 

processes, such as spin coating or printing, which allow them to 

form smooth film, which is consistent with organic 

semiconductors.[8] 

Electrodes 
Gold (Au), platinum (Pt) and Copper (Cu) are commonly used 

as conductive materials for fabricating source-drain electrodes and 

gate electrode as well in OTFT. A solution form of these metallic 

materials (or the conductive ink) can be either spin coated or 

directly printed on the substrate, using common printing 

techniques to form the circuit patterns. These materials are stable 

to be used in the contact points between source-drain electrodes 

and the semiconductors and, due to the low temperature process, 

they can be applied on plastic substrates. In addition, sufficient 

circuit pattern accuracy is achieved with direct printing methods, 

such as inkjet, flexo, gravure, micro-contact printing and screen 

printing, comparing with conventional photolithography. 

Moreover, the use of inexpensive conductive inks with common 

graphical printing techniques enable reducing manufacturing 

costs.[4] 

Frontplane 
Many technologies are utilized to serve as the frontplane of 

the flexible display such as Electrophoresis (e.g. Gyricon, EInk and 

SiPix), Electrowetting (e.g. Liquivista), and many others. Despite 

their common features, they vary in their physical implementation. 

Gyricon or Smartpaper™ was developed in 1970 at Xerox 

Palo Alto Research Center (PARC), by Nicolas Sheridan [15]. This 

technology is based on tiny pockets that are filled with oil, each 

individual pocket contains a bichromal ball, that is divided into 

two colors (black and white) and each side has an opposite 

electrical charge. The ball will rotate freely inside the pocket to 

show either black or white color to the visible surface based on the 

applied electric field. The pockets are suspended in a thin 

transparent rubber material and it’s embedded between two thin 

and flexible plastic sheets that contain electrodes (Figure 4). The 

image Pattern can be controlled by a passive or active-matrix 

backplane device by applying an electric field to the balls [16]. 

 
Figure 4 Gyricon structure 

[15]
 

Gyricon e-paper is thin, bistable, and low power consuming. 

It allows wireless updates, with resolutions between 200 dpi and 

300 dpi [17]. 

E Ink was developed by Joseph Jacobson in Massachusetts 

Institute of Technology (MIT) Media lab and introduced in 1999 

by E Ink corp. (Coburn et al, 2001). It consists of tiny 

microcapsules (100µ) each filled with negative (black) and 

positive (white) particles that are suspended in clear fluid. The 

affected particles will rotate to the top visible surface of the 

microcapsule based on the applied voltage. The microcapsules are 

suspended in a liquid, which is applied using screen printing to 

print eink on several surfaces, including plastic [18]. This surface is 

then laminated to a circuitry layer, which is controlled by a display 

driver to form the image pattern. 

The most recent evolution of E Ink's imaging film is called 

Vizplex (Figure 5). It’s fabricated in a roll-to-roll process to 

laminate the electronic ink onto a transparent plastic frontplane 

coated with indium tin oxide (ITO). The ink film is then converted 

into sheets after combining it with thin adhesive and a plastic 

release sheet. TFT backplane manufacturing companies can then 

use Vizplex to build their display. This development leads the 

electronic ink to be brighter, switch faster and support 8 gray levels 

as well. [18] 

 
Figure 5 Vizplex imaging film 

[18]
 

The SiPix version of electrophoresis technology is called the 

Microcup® (Figure 6). A Microcup® array is subjected on a 

flexible electrode layer that consists of polyethylene terephthalate 

(PET) plastic substrate coated with transparent conductor (e.g. 

ITO). Each individual Microcup® contains suspensions of colored 

dielectric solvent and charged pigmented (TiO2) particles and it is 

seamless sealed with an adhesive layer. The sealing layer is then 

laminated on a second conducted layer (Passive or Active-matrix 

backplane). Based on the applied electrical field, the viewing 

surface can either reflect the color of the solvent or the particles.[19] 
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Figure 6 Microcup® structure 

[20]
 

A large area of SiPix’s Microcup® array is fabricated in a 

high speed and low cost roll-to-roll lithographic or embossing 

process. The final Microcup film can be custom separated based on 

the required sizes of different display applications.  

Beside their flexibility and mechanical stability, ultra thin 

Microcup® Electronic Paper Displays (EPD) (150µm) are capable 

of achieving up to 16 grayscale levels and high color saturation 

with more than 300 dpi resolution. [21] 

Overall, despite the advantages of the electrophoresis 

displays, they are still suffering from lower response rates, which 

is required for displaying video contents. Electrowetting 

technology was developed to overcome this lack in electrophoresis 

display. This technology was developed at Philips Research in the 

Netherlands by Johan Feenstra and Rob Hayes. The fundamentals 

of this technology are based on the altering in wettability when an 

electrical field is applied between a hydrophobic material and a 

liquid causing microfluidic movements. [22] 

In electrowetting displays, each pixel consists of a set of 

layers where the bottom layer is a reflective white substrate and 

could be fabricated by using a white polymer foil coated with a 

thin, transparent ITO electrode. An active matrix substrate could 

replace the bottom layer for high speed display for video contents. 

An amorphous fluoropolymer hydrophobic insulator is then coated 

over the ITO electrode. A photolithographic process is then 

employed to build the pixel walls, which are then filled by colored 

oil film that consists of dissolved non-polar dyes in alkanes. A 

second electrode layer would be then deposited over the oil film. 

This electrode layer would be water. All these layers are fabricated 

between two polymeric substrates (Figure 7). [23] 

 
Figure 7 Electrowetting structure 

[24]
 

If no electric field is applied, the oil will spread out over the 

hydrophobic material, where the colorant of the oil will reflect the 

pixel color. When applying an electric field across the hydrophobic 

material, it will then become hydrophilic and the water will push 

the oil aside showing the white paper background. [22] 

The current resolution of the electrowetting display is 160 dpi. 

In addition, for displaying video contents, electrowetting displays 

have the advantage over the electrophoresis displays due to its high 

switching speed. [24] 

Encapsulating 
Encapsulating all the aforementioned layers of e-paper 

displays with a thin barrier coating (usually ITO coating) layer has 

the main purpose to extend the device life. This encapsulation 

layer is usually made from the same polymeric material as the 

bottom substrate layer, which ensures maintaining the flexibility 

characterization of the display. [12] 

Market size 
Based on IDTechEx estimation, the PE applications had the 

fastest growing market and would project to $55.1 billion by 2020 
[25]. For the e-paper display market, IDTechEx estimates that it 

would be subjected to $1.17 billion in 2014 and raising to $7.45 

billion by 2020. [26] 

Conclusions 
This paper focused on presenting the basic fundamentals of 

printed electronic (PE) technologies and the overall structure of e-

paper as one of the promising applications of PE. The possibility of 

printing circuits on flexible substrates, along with the development 

of electronic ink technology has contributed in introducing variant 

e-paper display products that mimic paper properties of flexibility 

and readability under different lighting conditions. The fabrication 

processes and materials requirements for the active matrix 

backplane were demonstrated. Also, most competing technologies 

behind forming electronic ink for the e-paper display were 

discussed. 
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