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Abstract 
The Q-Class printheads are the newest printheads from 

Fujifilm Dimatix.  Due to their silicon orifice plate, they provide 

improved drop placement accuracy per cost over earlier 

printheads.  These printheads are capable of jetting fluids with a 

wide range of drop volumes.  A new system for generating patterns 

for a high volume production masking application was developed 

using the Q-Class printheads.  The accuracy of drop placement, 

feature definition and the throughput of this system will be 

disclosed.  The architecture of the deposition system, which uses 

new drive electronics developed by ImTech, Inc. and mechanism 

developed by Korvis Automation, Inc. will be described.  During 

development many practical implementation challenges were 

encountered.  The most significant of these will be identified along 

with their solutions. 

Introduction 
The use of ink jet printing to directly create electronic 

components and circuits has been contemplated for many years.  

The state of the art in commercially available ink jet printheads is 1 

pL drops, corresponding to approximately 10 um dots when 

printed on a substrate.  Integrated circuit technology is now using 

features that are significantly below 1 um and it is clear that inkjet 

printing will not be used to create circuits at these resolutions 

however, there are many applications where the resolutions 

achievable by inkjet printing can be applied.  One of the significant 

challenges of using inkjet printing in electronics is in creating the 

precise patterns required.  The detail that can be achieved is a 

function of the interaction between the fluid being jetted and the 

substrate on which it is being deposited, and the accuracy of the 

placement of drops on the substrate.  Considerable effort is being 

expended by printhead manufacturers to improve the consistency 

and accuracy of their printhead product line. 

Dimatix introduced its new Q-Class printhead in 2009.  With 

its small size, high resolution nozzle spacing and MEMS orifice 

plate it is advertised to improve throughput and enhance printing 

performance. [1]  When compared to the specifications of the 

Galaxy printhead, it appears that the Q-Class printhead will 

provide more accurate drop placement.  This paper will explore the 

actual measured results of the Galaxy and Q-Class printheads when 

applied to the same application. 

The Application 
ImTech, Inc. and Korvis Automation, Inc. have been working 

together on an application in printed electronics where inkjet is 

being used to create a pattern on a smooth non-porous substrate 

with 70 um width lines and spaces.  Full coverage of the printed 

area and edge acuity of lines are critical parameters that must be 

met.  Initially Galaxy printheads were selected for the application 

and provided performance at the edge of acceptability.  Q-Class 

printheads are being evaluated to determine if they will provide a 

more optimal solution. 

Printheads 
The Basic specifications for the Galaxy and Q-Class 

printheads are similar although their construction is very different. 

(Table 1)  The Galaxy printheads are constructed of two 128 

channel assemblies that are connected together through the orifice 

plate to provide one row of 256 nozzles.  Each of the 128 channel 

assemblies is constructed of two rows of 64 Piezo actuators, with 

0.040 inch spacing, assembled back to back, and offset from each 

other by 0.020 inches.  The 128 nozzle assemblies are positioned 

side by side and offset from each other by 0.010 inches providing 

an assembly of 256 nozzles with 0.010 inch pitch (100 dpi).   

Table 1, Printhead Specifications 

Parameter Galaxy 

JA 256/30, 50, 80 

Q-Class 

QS-256/30 

Nozzles 256 256 

Native dot pitch (dpi) 100 100 

Drop volume (pL) 28, 50 or 80 30 to 80 

Drop Velocity (m/sec) 8 8 

Drop size variation,  

  1 sigma (%) 

5  

Drop Velocity variation,  

  1 sigma (%) 

5 5 

Jet straightness,  

  1 sigma (mrad) 

5 1.5 

Jetting Assembly size  

  (w x l x h, mm) 

25 x 102 x 102 8 x 117 x 71 

Number of PZT 

elements 

4 2 

Variable drop levels 1 1 to 4 

Fluid viscosities (cP) 8 to 20 8 to 20 

Operating Temperature 

max (Deg C) 

90 90 

Operating Frequency 

max (kHz(@pL)) 

20 33@30 

12.5@80 

Orifice Plate Stainless Steel Silicon 

MEMS 

 

The Q-Class printhead assembly has twice the dot pitch as 

those used in the Galaxy printhead, two rows of 128 channels with 

0.020 inch spacing offset from each other by 0.010 inches.  Only 

one assembly is required to provide 256 nozzles at 100 dpi.  The 

ink path for each nozzle in the Q-Class printhead follows a shorter 

and simpler path than on the Galaxy and the orifice plate on the Q-
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Class printhead is constructed from silicon using MEMS 

technology providing better drop directionality control over the 

Galaxy’s stainless steel orifice plate. The jet straightness 

specification for the Q-Class printhead has one third the variation 

of the Galaxy printhead.  The Q-Class printhead has several other 

advantages: it is one third as wide as the Galaxy printhead 

allowing much smaller assemblies when using multiple head 

arrays,  it has the Dimatix VersaDrop capability that allows a wide 

drop variation on a nozzle by nozzle and drop by drop basis, and it 

is available at a much lower price. 

Printing System  
For this application the printheads were fixed in position 

firing downward and the substrate was moved under the printheads 

in a direction perpendicular to the nozzle row (x-axis motion).  

The required print width was longer than the width of a printhead 

and two printheads were positioned with the last nozzle of one 

printhead overlapping the first nozzle of the next printhead. 

(Figure 1)  Mechanical adjustments were provided to allow the y-

axis position (nozzle overlap) and theta alignment between the 

printheads to be fine tuned.  The application required printing at a 

resolution that was finer that the native pitch of the printheads and 

the substrate position was incremented in the y-axis with sub-

nozzle resolution steps between each pass.  Motion stages were 

used with resolution and repeatability of 0.2 um and 1.0 um 

respectively.  Systematic variations in drop trajectory that were 

related to the internal construction of the printhead were 

eliminated by providing separate timing signals for each of the 

PZT elements in each printhead.  In the case of the Galaxy 

printhead, four independent firing signals were provided and in the 

case of the Q-Class printhead, two independent signals were 

provided.  These signals allowed adjustment of the firing location 

of each PZT element in the x direction at the pitch of the encoder 

signal from the process direction stage (0.2 um).   

 

 
Figure 1: Printhead mounting configuration 

The fluid used in the comparison test was a hot melt material 

with a phase change temperature between 60 and 70 deg C.  Fluid 

was pumped from a main reservoir to a Dimatix Miata lung and 

then to one end of the printhead.  The second port on the printhead 

was used for the initial priming and sealed while printing.  The 

entire ink supply system was operated at 80 deg C and the 

printheads were held at that temperature +/- 1 deg.  Nozzle 

pressure was held at negative 0.5 to 1.0 inches of water.  Printhead 

to substrate distance was set at 0.3 mm. 

Unfortunately, it was not possible to test the printheads in the 

same system.  The stages used for the Galaxy printheads ware 

capable of moving at 600 mm/sec while printing with the Q-Class 

printheads was done between 250 and 400 mm/sec.  The Q-Class 

printheads were fired using a system developed by ImTech.  This 

controller was developed to provide a simple method to control Q-

Class printheads.  The Galaxy printheads were tested using another 

controller with similar timing capabilities.   

The Q-Class printhead has the ability to create a range of drop 

volumes from one printhead model.  During the normal drop firing 

time the PZT can be energized with one to four pulses of electrical 

energy.  Each pulse pushes fluid out of the orifice before the tail of 

the drop separates from the printhead creating a single merged 

drop. (Figure 2)  Each nozzle in the printhead can be controlled 

independently in terms of which pulses in the wave form are 

applied to its drop.  This allows up to four tunable levels of grey 

scale to be jetted from each nozzle.  In the application being 

discussed here full grey scale capability was not required and for 

all of our Q-Class testing the same pulse shape was used for all 

nozzles and all rows in each print pass.  The fire pulse shape was 

optimized to provide the desired drop volume and velocity for the 

fluid being jetted was developed by varying the pulse shape 

parameters. The impact of a sub drop catching up to and merging 

with the main drop can be seen as dumbbell shaped drops. (Figure 

3)  At the extreme drops were tuned to eliminate the tail but they 

had unacceptably low drop velocities (around 3 m/sec). (Figure 4)  

The Galaxy printheads do not have VersaDrop capability and were 

fired with a single electrical pulse for each drop. 

 

 
Figure 2: Examples of fire pulse shapes 
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Figure 3: Q-Class Versadrop print mode 

 
 Figure 4: Low velocity drops with no tails 

The print pattern used for drop placement accuracy testing 

consisted of a single pass under the printheads with all nozzles 

from one PZT firing on approximately a 0.01 inch x-axis pitch.  

The substrate was then moved to an inspection station where it was 

placed on a stage with 0.2 um resolution and 1.0 um repeatability, 

passed under a vision system with 2.0 um pixels and the centroid 

of every dot was measured.  This data was analyzed using Octave, 

a shareware data analysis program.  An average X, Y and theta 

error was calculated for the entire image and subtracted from each 

point resulting in an error vector for each point.  A chrome glass 

mask was used as a reference to determine the error that was 

introduced by the measurement system which was below 0.8 um.  

(Figure 5) 
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 Figure5:System error measured with a chrome glass mask 

Results 
An example of a full printhead dot placement data set is 

shown in Figure 6.  A magnified view of the data taken from one 

PZT of a Galaxy test is shown in Figure 7 and of one PZT of a Q-

Class test is shown in Figure 8 at the same magnification.  It 

should be noted that there are twice as many nozzles in the Q-

Class data since its PZT banks have twice the dot pitch as those in 

the Galaxy printhead.  The RMS error in x and y for the Galaxy 

printhead is 1.4 um and 2.3 um with standard deviations of 1.4 um 

and 1.7 um.  For the Q-Class printhead the RMS error was 1.2 um 

and 1.9 um with standard deviations of 1.2 um and 1.9 um.   

 

 
Figure 6: Example of a full drop placement data set. 
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Figure 7: Magnified Galaxy Drop Placement Data 

 
Figure 8: Magnified Q-Class Drop Placement Data 

Microphotographs were made of lines printed with the Q-

Class printhead in the vertical (parallel to substrate motion) and 

horizontal (cross printhead) direction. (Figures 9 and 10)  The 

smallest line is one dot or about 62 um wide. 

 

 
Figure 9: Vertical lines produced with Q-Class 

 

 
Figure 10: Horizontal lines produced with Q-Class 

Challenges 
During the development of this application a number of 

performance anomalies were observed and an understanding of 

their cause was developed.  Discussion of a few of the more 

interesting ones follows.   

Printhead Bow 
When the data from the Q-Class printhead was first analyzed 

an unexpected non-random dot placement error across the 

printhead was measured. (Figure 11)  The nozzle positions were 

measured and were found to lie on a straight line.  In discussion 

with Dimatix it was determined that this is a known characteristic 

of Q-Class printheads which they call bow and is caused by drop 

ejection variation.  The amount of bow varies and is specified with 

each printhead shipped.  Printheads with up to 10 um of specified 

bow have been received.  Since each PZT element (128 nozzles) is 

fired with a single firing wave form, adjusting the fire timing of 

individual nozzles to correct this error is not possible.  While it is 

possible to reduce this error by applying a force to the side of the 

printhead it is not a practice that is recommended by Dimatix.  In 

many more traditional printing applications the magnitude of error 

from this source would be below the required threshold.  This 

anomaly was not observed with Galaxy printheads. 
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Figure 11: Q-Class Printhead Bow 
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Thermal Variation 
At one point in the development multi-pass print samples 

were created that showed position errors from print pass to print 

pass. (Figure 12).  At first, dot fire timing was thought to be the 

cause and the electronics were carefully examined with no errors 

being found.  During the process of replacing printheads the 

coupling between the heaters, the thermistors and the printheads 

was disrupted and the printheads were oscillating in temperature 

approximately +/- 5 degrees C from the desired set point.  While 

the exact cause of the trajectory variation has not been determined 

thermal expansion of mechanical components and viscosity 

variations in the fluid are all implicated.  Since thermal variation 

has a much lower rate of change than nozzle firing rates this only 

showed up in multi-pass print samples.  In Figure X it appears that 

the error only occurs in one diagonal direction.  In reality it occurs 

in both but is not as evident to the human eye in one diagonal as it 

is in the other.  This error was eliminated by improving the 

temperature control of the printheads. 

 

 
Figure 12: Errors caused by printhead temperature variation 

Cleanliness 
Printheads have extremely small fluid cavities and pathways 

and cleanliness is extremely important.  Erratic nozzle behavior 

was noted and in many cases found to be related to debris that 

crept into the system during assembly.  It is also important to 

perform materials compatibility tests at the system’s operating 

temperature with all parts of the system and fluids that will be 

used.  A small amount of epoxy that was not compatible with the 

fluid was overlooked in initial testing.  It was positioned in the 

fluid delivery system down stream from the final filter.  During 

operation the epoxy degraded and created particles that were 

carried by the fluid into the printheads and caused a number of 

erratic print anomalies as the particles moved around.  These 

problems were reduced by changing components and though 

implementation of clean environments for assembly of critical 

system components. 

Discussion 
The Q-Class printhead was shown to have improved 

performance over the Galaxy printhead but not to the magnitude 

that the specifications would indicate.  The much smaller size, 

Versadrop print capability and the lower cost of the Q-Class 

printhead provide significant advantage over the Galaxy in many 

applications but the printhead bow of the Q-Class printhead should 

be carefully considered in applications where high drop placement 

precision is required. 
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