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Abstract 
Inkjet printing of phase-change or hot melt materials allows 

to produce etch masks by digital and additive processing, thus 
enabling highly efficient fabrication of printed circuit boards, 
solar cells etc. Previously the binary inkjet printing with drop 
volumes of 50 pL was demonstrated with Xaar126 end-shooter 
printheads.[1] The present work describes new results on printing 
with Xaar1001 printheads. These printheads offer both, grayscale 
printing with a subdrop volume of 6 pL and excellent reliability by 
way of their unique ‘true throughflow’ capability, respectively. 

While the advantage of grayscale printing for high-resolution 
patterning is obvious and straight forward, the complexity lies in 
the recirculating ink systems that provide the constant ink flow 
through the printhead channels. A narrow temperature range has 
to be established throughout the total ink path, which avoids hot 
spots that would damage the inks as well as cold spots that 
counteract the ink flow rate. Print results with Sunjet Crystal 
HEP9520, operating between 80 ºC and 90 ºC, clearly show good 
droplet formation for 7 distinct gray levels spanning a range from 
5 to 37 pL with increments of 5.3 pL at a frequency of 5 kHz. 

Introduction 
Inkjet printing has lately proven to be a viable alternative to 

some subtractive patterning techniques. For specific applications 
inkjet printing provides sufficient resolution, volume control and 
positioning accuracy, where the advantage of the versatility of 
fluids to be used is of major interest to researchers and industrial 
users. While common inkjet ink formulations typically exhibit 
viscosities in the range less than 20 mPas with low contact angles, 
phase-change inks have drawn the attention due to the high contact 
angles,[2] resulting in high aspect ratio structures as a result if 
increased viscosity through cooling of the ink during flight. These 
inks may be used as etch masks in printed circuit board 
manufacturing or as barriers in diffusion processes for solar cell 
manufacturing, where the direct application of the resist material 
reduces process steps and waste. 

As phase-change materials are characterized by relatively 
high viscosities at room temperature, the ink system needed for 
handling these kinds of fluids in the Through-Flow Technology TM 
unique to Xaar 1001 printheads, requires careful system design in 
order to allow for constant low viscosities, the prevention of hot 
and cold spots as well as high flow rates for the removal of 
ingested air or debris.  

Early experiments 
The thermal impact of the ink and ink system on the actuator 

is of major importance for the final application. While the 
piezoelectric materials exhibits minor fatigue due to the their 
thermal stability lying distinctly beyond 100 ºC, material 
combinations present in the assembly may not withstand 

differential thermal expansion and result failure of the actuator. A 
proof of concept for the handling of fluids in the temperature range 
for 70 – 100 ºC, which is clearly outside the standard operating 
range of room temperature to 60 ºC, was conducted utilizing an 
industrial lubricant (Statoil, Glideway 68) as an experimental 
equivalent due to its rheological behavior at the anticipated 
temperature.  

As a first approach, our proprietary Evaluation Low Volume 
Ink System (ELVIS), which allows for simultaneous control of the 
flow, i.e. the differential pressure, and meniscus pressure solely 
through the interplay of hydrostatic overpressure and applied 
negative pressure, was modified to enable heating up to 100 ºC. 
This was accomplished by introduction of resistively heated 
reservoirs, supply and return tubes as well as the printhead itself, 
which allowed for the control of temperature of the inward flowing 
liquid to 100 ± 5 ºC, providing a suitable viscosity of 10-11 mPas. 
This system was jetting up to 42 pL droplets at frequencies up to   
6 kHz and a duty cycle of about 15 % for the duration of multiple 
days, which proved basic feasibility. 

Further experiments were performed using Dow Enlight™ 
1310 phase-change material. This highlighted many weak spots in 
the setup, including solidification of the material in the peristaltic 
pump used for recirculation, cold spots omitting continuous flow 
through the printhead as well as pressure drops throughout the 
system.  

The following sections give an overview on the measures 
taken to minimize the impact of the Phase-Change Evaluation Low 
Volume Ink System (HELVIS) on the jetting performance of the 
Xaar 1001 printhead. 

Heated Evaluation Low Volume Ink System 
(HELVIS) 

Figure 1 shows a schematic of the final assembly of the 
developed ink system for phase-change materials in conjunction 
with throughflow inkjet printheads, achieving temperatures up to       
120 ºC.  

It is essential to generate a constant temperature profile 
throughout the complete ink path, where excessive heating may 
disintegrate the ink and cold spots inhibit high flow rates necessary 
for the efficient removal of air bubbles and other ingestions. 

The fluid tanks, as can be seen in Figure 1, are positioned 
above the printhead to generate a hydrostatic overpressure. In 
order to generate flow and prevent the fluid from leaking through 
the nozzles, negative pressure is applied to the outlet cavity, 
establishing a pressure gradient between in- and out tank alongside 
with a constant average meniscus pressure. For convenience and 
larger operational windows, negative pressure as well as 
overpressure may be attached to both tanks. Recirculation is 
ensured through a diaphragm pump (KNF NF 10). 
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Figure 1: Schematic overview of the assembled ink system with a cut-out 
revealing the interior of the outlet tank 

The tank assembly is wire-eroded from a solid aluminum 
block, which then comprises the inlet and outlet tank, the 
recirculation path of the fluid between the tanks, jackets for the 
resistive heaters as well as the collet for the pump. Bottom and top 
lids were optimized to minimize the dead volume, accommodate 
the fittings for pressure application as well as floating sensors 
included for flow and fluid level control. 

The heating time t of this assembly, neglecting the thermal 
conductivity and capacity of the fluid may be estimated by  
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where mt is the mass of the aluminum tank, ΔT is the 

temperature difference to overcome, cth specific thermal capacity 
of aluminum, RG resistance of the heaters and U the supplied 
voltage. For a temperature difference of 70 ºC this results in a 
heating time of approximately 5 minutes.  

A major temperature drop was expected due to the strong 
temperature gradient between the fluid temperature and the outside 
of the PTFE tubing connecting the tanks and the printhead. To 
reduce the gradient and therefore the need for superheating of the 
fluid within the tanks, resistive heating using Kanthal D wires was 
realized. Neglecting convective and conductive evacuation, the 
power needed may be estimated using 
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where I is the current, t is the time, κ is the electrical 
conductivity of the wire, A is the cross-sectional area of the wire, ρ 
is the density of the wire, cth is the specific thermal capacity of the 
wire and ΔT the anticipated temperature difference.  

The printhead itself poses the most critical component of the 
system, as it on the one hand represents the highest flow resistance 
due to the micron sized geometry of the channel and at the same 
time poses the least accessible building block. Additional 
proportionally controlled heaters (MINCO HK5575) were installed 
on two distinct locations within the printhead. A first heating 
element was located on top of the stiffener providing mechanical 

strength to the actuator assembly. Its thermal mass occurs to be 
sufficient to enable homogeneous spreading of the temperature 
supplied by the heaters as well as the power dissipated from the 
internal electronics. A second heater was introduced close to the 
inlet and outlet connections as these are exposed to convective 
heat transfer from the surrounding air.  

The pump head was faced against the outside of the heating 
tanks. Hence, viscosities were sufficiently low for the pump to 
operate but have been insufficient to cover the full flow rate 
spectrum of the system. In the current experiments flow rates are 
limited to the maximum of approximately 90-100 mL/min. Though 
diaphragm pumps are prone to creating rather large pressure pulses 
as a result of their mode of operation, no influence on the stability 
of jetting was observed during strobe analysis or printing. 

Operation of the system described was verified by a 
comparative study of flow rates of a analog printing ink (MIT Ink 
Analog 106),  which exhibits a viscosity of 11 mPas at room 
temperature and HEP9520 from Sunjet’s Crystal Hotmelt Etch & 
Plating resist family which exhibits an equivalent viscosity at 85 
°C.  

Flow rates were recorded for different combinations of 
positive and negative pressure supplied to the in- and out tank, 
maintaining a constant average negative meniscus pressure. The 
results are displayed in Figure 2. 
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Figure 2: Flow rate as function of applied differential pressure for MIT Ink 
Analog 106 (25 °C) and Sunjet HEP (85 °C) exhibiting a viscosity of 11 mPas 

As can be clearly discerned from coinciding measurements in 
the embodiment, flow rates are equal for both fluids and therefore, 
no obstructions or cold spots are present in the system.  

Waveform development 
Driving waveforms for the piezoelectric actuator were 

developed using a stroboscopic setup allowing for triggered 
illumination of droplets at various frequencies and duty cycles. 
Using Xaar’s multipulse binary technology for grayscale droplet 
generation,       7 distinct dpd (drops per dot) levels could be 
generated, allowing for the modulation of drop volume from 5 to 
37 pL.  

For the anticipated applications in digital fabrication it is 
essential to omit satellite generation during droplet formation, 
which is on the one hand attributed to the characteristics of the 
fluid[3] but may also be influenced using advanced acoustic 
patterns for firing. The latter make use of out-of-phase wavefronts 

320 Society for Imaging Science and Technology



 

 

arriving at the nozzle to determine the point of break-off and 
thereby control the forward movement of the droplet and the 
retracting motion of the meniscus. 

As can be seen from Figure 3, stable and satellite free 
droplets could be generated at full duty cycle and a frequency of 5 
kHz, which translates into 0.35 m/s production speed at 360 dpi in 
printing direction. The characteristic 3 cycle pattern, stemming 
from the shared-wall operation[4] furthermore gives an indication 
of the velocity consistency between different cycles, i.e. 
neighboring channels, as well as deviation between differing 
velocities between the gray levels. The velocity characteristic for 
this waveform is depicted in Figure 4. The difference in droplet 
speed is about 1.5 m/s as worst case between 1 dpd and 7 dpd for 
this particular waveform, which would result in a deviation of 31.2 
µm on the substrate.  

 

  

  
Figure 3: Depictions of jetting performance for Sunjet HEP9520 for 1, 3, 5 and 
7 dpd [5 kHz, 95 °C, 100% duty cycle] 

Volume was calculated from gravimetric analysis assuming a 
density of 1 g/cm3. The results are presented in Figure 4 show 
good linearity with increments of 5.3 pL.  

Printing results 
Test prints were produced with an engineering-type printhead 

on a custom-built x-y print rig at a resolution of 360 x 360 dpi and 
print velocity of 0.35 m/s, in order to characterize the printhead at 
the maximum frequency of the waveform produced. The 
experiments were performed using PMC02C (Hifi Industrial Film) 
as substrate, which was kept at room temperature. 

Figure 5 visualizes the optically measured deviations from 
optimal placement for two actuator rows. As can be seen, 
variations are well within a confidence band of 20 µm, exhibiting a 
σ of 4.95 µm across the printhead and 7.4 µm in printing direction.  

The performance of the generated gray levels was evaluated 
by printing different structures at the standard resolution of the 
printhead. These patterns included straight lines along and across 
the printhead, differently angled lines, dot patterns, text as well as 

printed circuit layouts. A selection of the results is summarized in 
Figure 6. Feature sizes clearly differ and are attributed to the 
changing amounts of liquids, impact speeds (cf. Figure 4) as well 
as cooling conditions of the droplets during flight. While 1 through 
4 dpd show insufficient coverage of the substrate and would 
therefore result in perforated etch masks, droplet volumes of the 
higher gray levels allow for continuous features at 360 x 360 dpi.  
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Figure 4: Velocity and volume characteristic for Sunjet HEP9520 [5 kHz,        
85 °C] 
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Figure 5: Dot placement deviation from optimal 180 dpi at 6 dpd using Sunjet 
HEP9629 [0.35 m/s, 5 kHz, 85 °C, substrate at room temperature, x – across 
printhead, y – print direction, measured using Mitutoyo, QuickVision Elf] 

In order to exploit the full potential of the gray level 
printhead, resolution should be improved across the printhead as 
well as in machine direction. Higher resolutions call for the 
application of multiple interleaved printheads in order to overcome 
the physical limit perpendicular to the machine direction and 
decrease of machine speed due to the frequency barrier of the 
waveform. An alternative approach is multipass printing, where 
single printheads or the stage are moved in order to interleave the 
previously printed patterns and therefore enable better coverage. 
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Figure 6: Print results of Sunjet HE9520 on PMX02C for 1 dpd, 3 dpd, 5 dpd 
and 7 dpd [0.35 m/s, 5 kHz, 360 x 360 dpi, 85 °C, substrate at room 
temperature] 

Conclusion and outlook 
In the presented experiments we have shown the basic 

applicability of Xaar 1001 with its grayscale and unique ‘true 
throughflow’ capabilities to the field of phase-change materials. 
The latter allows for higher reliability due to self recovery of 
channels after air or debris ingestion into the ink channel and 
better thermal consistency due constant supply of fresh ink and 
evacuation of excessive heat generated during piezoelectric 
actuation. 

A proprietary recirculation ink system, based on the 
interaction of hydrostatic as well as externally applied positive and 
negative pressure, was designed to allow for consistent heating of 
the phase-change material and thereby replicating the flow 
behavior of conventional inks exhibiting viscosities of 
approximately 10 mPas.  

A waveform, generating droplets of 5 to 37 pL with an 
average increment of 5.3 pL was proven to perform well up to 
5000 Hz. This corresponds to a production speed of 0.35 m/s at the 
printhead’s natural resolution of 70.05 µm. 

Print tests verified the anticipated operation of the printhead. 
Patterns printed on PMX02C at the determined maximum 
frequency of the present waveform showed dot placement 
accuracy of 4.95 µm across the printhead and 7.4 µm in printing 
direction at a substrate velocity of 0.35 m/s. Continuous features 

were found to form above a droplet volume of 26 pL using the 
contemplated combination of temperature, substrate and 
resolution. This, however, is strongly dependent on the kinetic 
energy introduced from the droplet during impact[5] and may 
therefore be influenced by appropriate waveform development 
towards higher droplet velocities.  

Future work will include acoustic preconditioning of the ink 
channel in order to optimize the droplet velocity profile, lifetime 
tests as well as closer study of the influence on the different 
cooling rates on the various droplet sizes generated. 
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