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Abstract

Silver nanoparticle inks are printed on nine papers as well as a
polyimide film. Structure width and edge raggedness is evaluated
on each substrate for both polar and non-polar ink. The substrates
are characterized in terms of material content and various
physical surface properties. The aim of this study is to establish
relevant correlations between printed structure measurables and
surface properties, in order to expand the understanding of the
mechanisms involved in nanoparticle ink - paper surface
interaction. A multivariate analysis is presented which reveals
correlations between print performance and paper properties, as
well as relations between different paper properties. The results
suggest that besides surface energy considerations, absorption
rate and surface roughness play important roles for achieving well
behaved print  structure electronics

definition in paper

applications.

Introduction

Printing of functional materials is an expanding field of interest as
a complement to traditional deposition methods. Compared to
common patterning methods such as photo-lithography, printing
has the obvious advantage of being an additive method, leading to
less material consumption and therefore economic and
environmental advantages. Printing can also be adapted to a wide
range of substrates including flexible and environmentally
attractive materials such as paper[1].

A combination of ink and substrate properties together with
the process requirements usually influence the choice of printing
method. Inkjet is suitable for low viscosity fluids and due to its
non-contact nature it can be used for surfaces of various geometry
including pressure-sensitive surfaces. When high conductivity is
needed, metal nanoparticle dispersions are typically used, among
which silver is the most commonly used metal due to high
performance and comparably low reactivity under ambient
conditions[2, 3].

The possibility of using paper as a substrate for printed
electronics is of considerable interest due to cost efficiency and
environmental considerations. However, some inherent properties
of paper such as porosity, surface roughness and water absorption
make functional printing on paper non-trivial. These non-ideal
properties may be overcome or even used to advantage for certain
applications, as in the case of a printed moisture sensor [4].
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In this paper, print definition is examined on nine different
papers as well as a reference polyimide film, using silver
nanoparticles dispersed in both polar and non-polar carrier
solution.

Materials and Methods

Printing and inks

A Dimatix 2831 piezoelectric inkjet printer was used to print 20
mm long lines with the smallest possible width (single nozzle).
The drop volume was 10pL and the nozzle voltage 24V. Drop
spacing was set to 20um; the nozzle and platen temperature was
set to 28°C.

Two silver nanoparticle dispersions from Advanced Nano
Products were used; DGP40LT with polar dispergent (triethylene
glycol monoethyl ether) and DGHS5LT with non-polar dispergent
(n-tetradecane). The inks have similar particle size distributions
and mass loading. Viscosity and surface tension of the dispersions
were measured with a Brookfield LVDV-+ and a Kruss K9,
respectively. Viscosity and surface tension was measured to 12.9
cP, 37.3 mN/m for the polar ink and 9.75 cP, 29.4 mN/m for the
nonpolar ink.

Paper characterization

Material analysis was performed using both energy-dispersive
spectroscopy (SEM/EDS, Jeol JSM-5800 LV / Oxford Link ISIS)
and Fourier transform infrared spectroscopy (FTIR, Perkin Elmer
Spectrum One/Autolmage) on the top layer of the surfaces.

Contact angle measurements were performed according to test
method Tappi T558 om-07, using a Fibro DAT 1100 drop
absorption tester with 4uL of water and 2.5 pL of diiodmethane.
Measurements were made as a function of time with first readings
taken at 0.02s (initial contact angle, immediately after reasonable
geometrical stabilization of the drops). Surface energy components
were calculated using the geometric-mean equation[5]:

(+cos(@))y, =2 [y 7e +[yiyt M

where vy, is the surface tension of the liquid and vy, is the surface
energy of the substrate. Superscripts d and p denotes dispersive
and polar component respectively, where y =%+ 7.

Note that measurements of contact angles are not trivial on
heterogeneous, absorbing and rough surfaces; initial contact angle
is influenced also by surface roughness and absorption rate[6].
Nevertheless, in this study we use equation 1 with the initial
contact angles and refer to the result as apparent surface energy.
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Absorption was measured using a Bristow absorption tester
[7] with water as test liquid and contact times in the range of 0.01
to 2 seconds.

Surface roughness was measured with an optical profilometer
(FRT MicroProf with CRT HO sensor). The profilometer data was
post-processed in custom FFT software to extract wavelength-
dependent surface roughness information.

The porosity was characterized with a Mercury porosimeter
(Micromeritics Autopore IV 9500) according to ISO 15901-1. A
pore size range of 10um down to approximately S5nm
(corresponding to the maximum pressure limit of 230 MPa) was
examined.

Table 1. Substrates in the study. Classification based on data from
manufacturers, Hg-porosimetry and SEM-EDS/FTIR material analysis.

Results

Paper characterization

Results from the surface material analysis and porosimetry
can be seen in table 1. Table 2 shows data on some of the
measured physical properties of the ten substrates.

Paper 1-4 are commercially sold as high performance inkjet
photo papers. This group of papers had narrow pore size
distributions and a characteristic pore size in the 10 nm range.
Absorption rate was very high, and this group also had the highest
total pore volumes. Surface roughness values were low for papers
2-4 but a factor five or higher for paper 1. This was also the group
were the apparent surface energy values were the largest.

Paper 5 is coated with a water soluble protein gel. It's typical
application area is as photo paper for dye based inks in which the
coating layer 'swells' and encapsulates the dye, thereby prolonging
the lifetime of the print[10]. Surface roughness was low and
absorption rate in the middle range.

Papers 6-7 are lightweight coated papers typically used for
high quality offset printing. These were characterized as having
low absorption rate, low surface roughness and low surface energy.

Paper 8 and 9 both have low energy, high roughness surfaces.
Paper 8 (matte inkjet paper) has higher absorption rate and pore
volume than paper 9 (copy paper).

Substrate 10 is non-porous/non-absorbing and has the
smoothest surface. While the surface roughness of the transparent
polyimide film in this study was not possible to measure with the
optical profilometer, additional measurements with the Parker
Print Surf (PPS) method confirmed it to be smoother than any of
the paper surfaces.

Table 2. Surface measurements. Neither dispersive- and polar surface energy

components nor mid- and low frequency surface roughness contributions are
explicitly shown here, but are used in the multivariate analysis.

Substrate Coating Type Main Surface
Composition
1 Semigloss Mesoporous Al,O3
Photopaper
2 Glossy Mesoporous Al,O3
Photopaper1
3 Glossy Mesoporous Al,O3
Photopaper2
4 Glossy Mesoporous Silica
Photopaper3
5 Swellable Water Soluble Gelatin
Photopaper Polymer
6 LWC1 Lightweight CaCQgs, Caolin
coating Clay
7 LWC2 Lightweight CaCQgs, Caolin
coating Clay
8 Matte Inkjet Macroporous Silica
Paper
9 Copy Paper Uncoated CeIIqufgﬁérCaCos
i
10 | Polyimide film Uncoated Polyimide
Structure definition evaluation
The 1SO13660 standard definitions of line width and

raggedness[8] were used as measures of structure definition.
Printed lines were scanned at 2400 dpi with an Epson 10000XL
fladbed scanner and the images were fed into a custom software,
calculating the line width and raggedness according to the ISO
definitions.

Multivariate Analysis

A Principal Component Model (PCA-XY) [9] was constructed in
Simca-P software(version 11.5, Umetrics Inc.) and fitted to the
data. Four components were used, resulting in a cumulative R2X
of 0.98 and a cumulative Q2 of 0.89.
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etrtace. ABSOTBION | porg via | Roughness

3:;;% (cm*m*t) (em®/m’) (um?)
1 53 105 113 0.027
2 71 90 84 N/A
3 64 50 71 0.0037
4 54 105 82 0.0044
5 60 18 51 0.0028
6 44 8 28 0.0027
7 36 9 28 0.0041
8 33 22 79 0.110
9 32 15 47 0.112
10| 51 1 3 N/A
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Line Definition

Figure 1 shows data on line width and raggedness as well as
images of printed lines on the ten substrates. The print definition is
highest on the inkjet photo papers (paper 1-4).

Raggedness is particularly large on the roughest substrates
(paper 8 and 9), and has a characteristic appearance known as
feathering (figure 1 and 3). Generally the substrates with the
slower absorption rates show lower print definition, and on the
polyimide film, which is the only non-absorbing substrate in the
study, lines have the lowest definition.

Line Width Raggedness  Line Width Raggedness
38.4 0.83 40.2 138
1. Semigloss
photopaper
36.4 0.63 34.6 0.75
2. Glossy Photopaperl
46.9 0.72
3. Glossy Photopaper2
39.9 0.82
4. Glossy Photopaper3
110 4.6
5. Swellable
Photopaper
6. LWC1 /
49.2 1.8
7.LWC2
58.9 iz 60.7 3.4
8. Matte Inkjet Paper
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9. Copy Paper R g0 TR
105 i7:3
10. Polyimide film & O - i

Figure 1. Print definition with polar and non-polar nanoparticle ink on the
different substrates. All images are at equal magnification. Values in um.

Figure 2 shows a roughly linear relationship between the
raggedness and the line width for the nine papers. It may be argued
that the raggedness and the line width both are influenced by the
absorption rate, where a fast absorption (table 1) prevents the ink
spreading and feathering.
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Figure 2. Raggedness plotted against line width for the nine different papers.

Figure 3. Microscope picture of substrate 9 (copy paper), showing large
surface roughness and ink feathering.

Multivariate analysis

A 4-component Principal Component Analysis (PCA) model was
fitted to all the paper data. The polyimide film was not included in
this model due to its different nature. A list of the variables is seen
in table 3. The model has high values of goodness of fit
(R2X=0.98) and goodness of prediction (Q2X=0.89).

Examining the score plot (figure 4) reveals a cluster structure
corresponding well with the coating composition according to
table 1. The relations of different variables are indicated in the
loadings plot (figure 5). Close variables are correlated and
opposing variables negatively correlated. In the same way
correlations also exist with papers at similar areas in the
corresponding score plot. For instance, high surface roughness is
associated with the copy- and matte inkjet paper, and large line
width/raggedness is inversely correlated with the mesoporous
group of papers.
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Table 3. Variables defined in the PCA model. Three variables of surface
roughness are incorporated; HF, MF and LF, corresponding to a spatial
wavelength of 7.5, 30 and 190 um respectively.

Type Variable Quantity
Y LWP Line width(polar)
Y LWNP Line width(non-polar)
Y RagP Raggedness(polar)
Y RagNP Raggedness(non-polar)
X AbsRate Absorption rate
X Pore V/A Pore volume/surface area
X SEdisp | Apparent dispersive surface energy
X SEpol Apparent polar surface energy
X SR_HF Surface roughness (HF)
X SR_MF Surface roughness (MF)
X SR_LF Surface roughness (LF)
= 1 \ cossy SigigY PhoT /
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Figure 4. Score plot. Clustering is seen for the glossy photo papers and the
lightweight-coated papers, indicating similar properties.
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Figure 5. Loadings plot. Absorption rate and pore volume inversely correlated
to line width and raggedness for both polar and non-polar ink.
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Discussion

The multivariate analysis(figure 4, 5) as well as a comparison of
the microscope images(figurel) and surface data(table 2) suggest
that high absorption rate is the dominant factor explaining the
excellent line definition of substrates 1-4. For this group of papers,
substrate 3 exhibits worse definition and lower absorption rate than
the rest, which is consistent with this assumption.

The weak line definition of substrate 8 and 9 is arguably
dominated by excessive surface roughness. Capillary forces drive
ink along the surface pore channels and fibres associated with
these papers, an effect known as feathering[11] (see figure 3).

However, it can be speculated that a limited amount of
surface roughness may actually be beneficial for print definition
under certain conditions, if local surface perturbations act as
physical barriers restricting nanoparticle movement. The very
smooth surface would then partly explain why the polyimide film
has the least defined lines, although the dominating factor is the
lack of absorption. It has been shown that a thin coating layer on a
smooth plastic film can improve print definition considerably, with
an associated increase in surface roughness [12].

As expected, definition differences between the two inks are
most noticable for the least absorbing substrates (6, 7 and 10), for
all of which the non-polar ink show worse definition. This can be
understood from a surface energy/surface tension perspective; the
non-polar ink has a lower surface tension and therefore larger
spreading on the same substrate.

The main reason for the low definition on substrate 5 is
probably of chemical nature, in that it may be understood as an
effect of dissolvation and diffusion. With the polar dispersion, the
polymer coating layer partly dissolves and silver nanoparticles
diffuse in the dissolved layer. The better definition seen here for
the non-polar ink should be expected if the non-polar solvent does
not dissolve the coating layer.

Regarding the multivariate analysis, the groups of papers
appearing in the score plot correspond well with the groups of
similar coating that was found in the porosity/material analysis
(table 1). It is therefore indicated that the model work well for
coating classification within this set of papers. The model shows
high values of model fit and predictive ability and should therefore
be effective for analysis of correlation structure inside the model
range.

Conclusions

When examining structure definition with inkjetted silver
nanoparticle suspensions, all paper substrates compared very
favourably with the polyimide film(the non-absorbing substrate). It
is speculated that, for low absorption rate surfaces in particular,
surface roughness may in fact be beneficial due to pinning of the
nanoparticle ink, limiting excessive spreading.

With the low absorption rate surfaces, clear differences in the
structure definition were seen for the different inks (with polar as
compared to non-polar dispersion), suggesting that surface energy
considerations and chemical interactions also come into play. For
the high absorption rate surfaces however, this ink dependence was
significantly reduced.
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Performing a multivariate analysis on the complete data
matrix indeed suggests that high absorption rate and porosity are
strongly correlated with low line width and raggedness and can be
regarded as the dominating factors for good print definition.
Apparent surface energy and surface roughness had less clear
correlations with print definition within this data set.
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