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Abstract 

The effects of varying corona surface treatment on ink drop impact 
and spreading on a polymer substrate have been investigated. The 
surface energy of substrates treated with different levels of corona 
was determined from static contact angle measurement by the 
Owens and Wendt method. A drop-on-demand print-head was used 
to eject 38 µm diameter drops of UV-curable graphics ink 
travelling at 2.7 m/s on to a flat polymer substrate. The kinematic 
impact phase was imaged with a high speed camera at 500k 
frames per second, while the spreading phase was imaged at 20k 
frames per second. The resultant images were analyzed to track 
the changes in the drop diameter during the different phases of 
drop spreading. Further experiments were carried out with white-
light interferometry to accurately measure the final diameter of 
drops which had been printed on different corona treated 
substrates and UV cured. The results are correlated to 
characterize the effects of corona treatment on drop impact 
behavior and final print quality. 

 

Introduction 
In recent years ink-jet printing has become an increasingly 

flexible tool for manufacturing. Not only can traditional graphics 
be printed with extremely high quality, but now also at a much 
greater scale and speed than previously imagined. Other 
techniques using ink-jet printheads are developing rapidly with 
good results across electronic, manufacturing and biological 
engineering. Understanding the fundamentals of drop impact on to 
a solid surface is essential for controlling the shape and position of 
the deposited material. In a graphics context this would determine 
the quality of an image, but in other applications it can influence 
whether a pixel in a display screen operates correctly, a living cell 
is in the right place or if a circuit will conduct electricity.  

Many applications require fluids to be deposited on to a 
poorly-wettable surface, such as a polymer film, coated glass or 
silicon. In order to achieve good adhesion the ink must wet the 
surface adequately. In order to achieve this, substrates often have 
their surface modified by corona discharge treatment (CDT), 
which increases the surface energy, and therefore enhances the 
wettability of the surface.  

The various phenomena involved in liquid drop impact and 
spreading have been widely investigated for many different 
substrates and impact conditions. Four stages of impact have been 
identified by Rioboo et al. [1] as the kinematic, spreading, 
relaxation and wetting phases. The timescale and rate of change of 
diameter in each phase together determine the final drop diameter. 
Several approaches to predicting this from the initial conditions 
have been made over the last twenty years with considerable 

success. However there is little literature on the behavior of sub-
millimeter drops, and currently none which examines the effects of 
CDT on drop impact and spreading behavior. 

Corona treatment is used widely across the printing industry 
to increase the surface energy of polymeric films and metal foils. 
The corona discharge is produced by electrodes connected to a 
high-voltage generator which ionize the air between them and the 
surface of the film, which is backed by a grounded base roll. The 
ions produced are believed to oxidize the surface of the substrate, 
increasing its surface energy and thus reducing the contact angle 
between the printed fluid and the substrate (e.g. Kannangara et al. 
[2]). 

Investigations by Meiron and Saguy [3] into the effect of 
corona treatment on high surface energy polymers showed that the 
increase in surface energy came from the polar component of free 
surface energy. This is supported by chemical analysis of corona-
treated surfaces by Briggs et al. [4] who found a 3.5 % increase in 
oxygen-based functional groups for a low level of corona 
treatment (final surface energy 44 mJ m-2) and a 4.7 % increase for 
higher treatment (surface energy 59 mJ m-2). Investigation of the 
surface topography of corona-treated polypropylene has been 
carried out by Strobel et al. [5] and O'Hare et al. [6]. Using atomic 
force microscopy (AFM) they imaged the surface before and after 
treatment and suggested that the surface energy was affected by 
the formation of low molecular weight oxidized materials.  

The objective of the present work was to determine the 
effects of different intensities of CDT on ink drop spreading on a 
polypropylene-based film substrate. The change in surface energy 
was investigated and its influence on the behavior of 38 µm 
diameter droplets impacting at 2.7 m/s, during both the kinematic 
and spreading phases, is discussed. Methods of calculating the 
maximum drop diameter were compared and the dependence of 
final drop diameter on the level of CDT was studied for drops 
printed under industrial conditions.  

Experimental methods and materials 
The substrate used in these experiments was a top-coated 

polypropylene-based film manufactured by UPM (UPM, Helsinki, 
Finland). Printing and drop impact experiments were performed 
with a commercial UV-curable graphics ink (SunJet, UK). All 
corona treatment was carried out with a commercial machine (CP-
LAB, Vetaphone A/S, Denmark) and printing experiments and 
measurements were carried out within one hour of treatment.  

Contact angles were measured by the sessile drop method 
using millimeter-sized drops of the UV-curing ink, triple-distilled 
water and ethylene glycol, as described by Marmur [7]. Ten 
measurements of angle were taken and averaged for each 
combination of fluid and surface, with an error of ±1.8o. 

Figure 1 shows the optical setup used to image the impact and 
spreading of the ink drops. A Xaar 126/80 drop-on-demand 
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printhead was used to produce individual 38.5 ± 0.2 µm diameter 
drops traveling at 2.7 ± 0.1 m/s. These conditions correspond to a 
Reynolds number for jet formation of approximately 11.2 and a 
Weber number of approximately 8.9. Drop spreading was recorded 
for the first 300 ms after impact. This cut off was used because in 
industrial applications UV-curable inks are pinned within this 
timescale with a low dose of UV light to preventing further 
spreading. The early stages of drop impact were captured with a 
Shimadzu ultra-high speed video camera (Hypervision HPV-1). 
Illumination for these experiments was provided for a period of 2 
ms by a high intensity flash system (Adapt Electronics Specialized 

Imaging AD500). Images were captured at 500,000 frames per 
second for 100 frames, with a resolution of 0.66 µm per pixel. The 
later stages of drop spreading were studied with a Phantom V7.3 
high speed video camera with a Navitar 12 lens at 20,000 frames 
per second, with a resolution of 0.88 µm per pixel; in these 
experiments the drop was illuminated with a Flexilux 150 W 
halogen light via a Microtec light guide, focused through a 
microscope objective to achieve a local high light intensity. 

 
 

Figure 1.  Experimental setup used to study drop impact and spreading for 

38 mm drops travelling at 2.7 m/s. The types of cameras and light sources 

used are described in the text. 

Individual drops which had been printed on to the substrate at 
1 to 6 dpd (droplets per drop) from a Xaar 1001 grayscale drop-on-
demand printhead and cured within 100 ms of printing with a 275 
nm UV light were measured by white-light interferometry with a 
Wyco NT3300 instrument, which is capable of measuring features 
between 0.1 nm to 2 mm in height, with a vertical resolution of 0.1 
nm. The heights and widths of the cured drops were measured 
from 2-D optical sections in both the x and y directions (in the 
plane of the substrate), and were repeated for several drops for 
each sample. 

 

Results and discussion 

Quasi-static behavior 
Contact angle analysis is a simple yet useful technique for 

calculating the surface energy of a substrate.  The contact angle 
values determined for millimeter-sized drops of water, ethylene  
glycol and UV ink on polymer substrates after corona treatment to 

 
Figure 2.  Static contact angle results for water (circles), ethylene glycol 

(triangles) and graphics ink (squares) on substrates with different levels of 

CDT 

levels between 0 and 140 W.min/m2 are plotted in Figure 2. It is 
clear that increasing the level of CDT decreased the contact angle 
for both water and ethylene glycol. However for the UV ink the 
contact angle decreased slightly for low levels of CDT and then 
increased at higher levels.   

The polar (γp) and dispersive (γd) components of surface 
energy and the total surface energy were calculated from the 
Owens and Wendt equation: see equations (1) and (2) [8]. The 
results are shown in Figure 3. The total free surface energy (γ) 
increased with increasing treatment level, due to an increase in the 
polar component, while there was little change in the dispersive 
component. This would be consistent with an increasing level of 
surface oxidation with a higher level of CDT.  

 (1 – cos θ) γl = 2 √ γs
d  γl

d   + 2 √ γs
p  γl

p   (1) 

  γl = γl
d  + γl

p        (2) 

 
 
Figure 3.  Surface energy calculated from the Owens and Wendt equation: 
polar component (circles), dispersive component (triangles) and free surface 
energy (squares) for substrates with different levels of CDT 

 
The contact angles measured in these quasi-static tests were used 
to compute wetting envelopes for the different levels of corona 
treatment. The contours corresponding to a 0o contact angle for 
each level of CDT are shown in Figure 4. This shows how 
increasing the level of CDT increases the wettability of the 
substrate. The point corresponding to the UV ink lies between the 
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Figure 4.  Wetting envelopes derived from quasi-static measurements of 
contact angle for different levels of corona treatment from 0 to 140 W.min/m2. 
The star shows the values for the UV ink. 
 

40 and 50 W.min/m2 contours which suggests that the film 
requires treatment beyond 40 W.min/m2 for the ink to wet the 
substrate completely.  

Dynamic analysis  
In order to study the effects of corona treatment on the 

deposition of drops under printing conditions (i.e. with very small 
drops deposited dynamically), the spreading behavior of printed 
drops of UV ink was imaged continuously during the kinematic, 
spreading and relaxation phases. In all these dynamic experiments 
the drops had a diameter Do of 38 µm and a velocity at impact, Uo 

of 2.7 m/s. The results have been analyzed in terms of spread 
factor and non-dimensional time. The non-dimensional time, t*, is 
defined by t* = t*Uo/Do. The spread factor, β is the instantaneous 
deposit diameter D divided by the initial diameter, D/Do. 

In order to examine the effects of CDT on the kinematic 
phase of impact the first few hundred microseconds were also 
imaged as described above. Figure 5 shows the results for the first 
100 µs of impact. The transition between the kinematic and 

spreading phases can be seen after ~4 µs.   
Figure 5. Spread factor plotted against non-dimensional time for 
impact of 38.5 μm drops of UV ink at 2.7 m/s on polymer substrates with 
different levels of corona treatment during the earliest stages of spreading.  
The different phases of spreading are marked. 
 

Different levels of CDT do not change the diameter or duration for 
the kinematic phase. Similarly, the early stages of the spreading 

phase remain unchanged by different levels of CDT. This is not 
Figure 6. Spread factor plotted against non-dimensional time for impact of 
38.5 μm drops of UV ink at 2.7 m/s on polymer substrates with different levels 
of corona treatment.  

 

unexpected as the earliest impact stages are controlled purely by 
inertia and the effects of substrate surface energy have not yet 
come into play.  

Figure 6 shows the spread factor for the first 300 ms after 
impact on polymer substrates treated with different intensities of 
CDT. At low levels of corona treatment the time taken to reach the 
relaxation phase appear to be longer, whereas for 80 - 120 
W.min/m2  the transition between the wetting  phase and reaching 
equilibrium clearly occurs between 20 and 40 ms after impact. 
This is consistent with the static contact angle results for UV ink, 
as the drop will spread further before reaching its equilibrium 

contact angle.  
 

Figure 7.  Maximum spread factor for drops of UV curing ink printed on 
substrates with different levels of CDT. Spread factors are plotted against the 
quasi-static contact angles for the ink on the same substrates. 

The maximum spread diameter, Dmax, and associated 
maximum spread factor βmax= Dmax /Do, were measured for ink 
drops printed on substrates after different levels of CDT. The 
values are plotted in Figure 7 against the contact angle values 
measured for large drops in the quasi-static experiments. Many 
methods have been reported for predicting βmax. The models of 
Asai et al. [9] and Scheller & Bousfield [10] are based on the We 
and Re numbers, and do not require a contact angle measurement. 
Both are empirical, with the model of Asai et al. being based on 
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micrometre-sized drops. The model of Chandra & Avesidian [11] 
is based on energy conservation with a cylindrical shape at βmax. 
Fukai et al. [12] developed a semi-empirical model based on 
Chandra & Avesidian's work. In a further model a spherical cap 
shape can be assumed, based on volume conservation and the 
value of static contact angle. This approach gives a similar result 
to the value of βmax proposed by Rioboo et al [1] which is based on 
volume conservation but uses the advancing contact angle, θadv, 
instead of the static contact angle.   

The predictions from each of these models are also plotted in 
Figure 7. The models of Asai et al. [9] and Scheller & Bousfield 
[10] are in best agreement with the results. The model based on a 
spherical cap and the value of quasi-static contact angle 
overestimate the final diameter. Use of the advancing contact 
angle together with volume conservation [1] also overestimates 
βmax. These results suggest that previous models derived for large 
(millimeter-sized) drops are applicable to the much smaller drop 
sizes encountered in ink-jet printing, and that a simple model 
based on We and Re numbers is a good predictor for βmax under 
the conditions studied here. 

 
Figure 8. Final drop diameter for printed and cured drops on polymer 
substrates with different levels of corona treatment, for six different drop sizes 
(gray-scale levels) 

Final print quality 
In order to validate these experimental results obtained with 

individual drops in laboratory conditions, printed samples 
generated in a full-scale industrial web printing system were 
analysed. Drops of UV ink were printed from a Xaar 1001 head on 
to the same polymer substrate which had been corona treated (with 
an in-line system) and were UV-cured ~100 ms after printing. 
White-light interferometry was used to measure the final deposit 
diameter for the solidified drops.  The sizes of the drops were 
varied by varying the gray-scale level, from 1 to 6 drops per dot 
(dpd). For this head, each step in the gray-scale level corresponds 
to a change of 6 pl in total drop volume. The results are shown in 
Figure 8. 

The maximum printed drop diameter occurred for treatments 
between 20 and 40 W.min/m2. This is consistent with the low 
contact angle results measured at these levels of treatment and the 
relatively prolonged spreading phase before drop relaxation. It can 
therefore be concluded that the results found experimentally under 
laboratory conditions are applicable to practical industrial printing 
conditions.  

Conclusions 
The changes in surface energy for a coated polypropylene-

based film substrate have been investigated for different intensities 
of corona discharge treatment. The total surface energy of the film 
increased with the level of CDT, and was associated with an 
increase in the polar component. This resulted in an increase in 
wettability for both ethylene glycol and water. A UV-curing 
graphics ink was found to wet the surface best for treatment levels 
between 20 and 40 W.min/m2. 

The impact and spreading of 38 µm drops of graphics ink 
with an initial velocity of 2.7 m/s were studied in detail during the 
kinematic, spreading and relaxation phases. The spread factor 
(instantaneous deposit diameter divided by the original drop 
diameter) was recorded during drop impact for substrates with 
different levels of corona treatment. The main influence of CDT 
on spreading behavior was to extend the spreading phase and 
increase the time before the relaxation phase was reached at low 
levels of corona treatment. This behavior correlates with the quasi-
static contact angle results and is also consistent with 
measurements by white-light interferometry of final deposit 
diameter for printed and cured drops produced with a gray-scale 
print-head in an industrial system.  

Several approaches to predicting the maximum spread factor 
have been compared with experimental measurements. It was 
found that the models using both Weber and Reynolds numbers, 
proposed by Asai et al. [9], gave the most accurate prediction for 
this experimental setup. 
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