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Abstract 
Inkjet printing is widely used as a technique for the 

fabrication of printed electronic devices.  Here we present an 
analytic treatment of the inkjet printing of two dimensional 
features with a partially wetting ink.  We develop and demonstrate 
an algorithm for generating variable line spacings that leads to 
printed features superior to those possible at any fixed spacing.  By 
modeling printed bead shape during the print and by compensating 
for evaporation, we are able to accurately control a feature’s 
contact angle as it is printed, line-by-line.  Finally, we model the 
maximum corner curvature possible in an equilibrium, partially 
wetting feature with a positive retreating contact angle and 
confirm our results with a non-volatile printed system. 

Introduction 
Solution processing presents a low cost, environmentally 

friendly alternative to traditional microfabrication techniques.  Its 
additive processing presents an alternative to the slow, costly steps 
of photolithography and vacuum deposition.  Solution processing 
techniques include roll-to-roll patterning and inkjet printing, the 
latter being the focus of this work.  Researchers have fabricated 
various microelectronic devices with inkjet printing including 
transistors, displays, and sensors.[1-3]  All of these devices make 
use of combinations of printed rectilinear shapes.  Thus, an 
understanding of the formation of a rectangle is a logical starting 
point to optimize the fabrication of arbitrary patterns.   

Advancing inkjetted device fabrication requires a better 
understanding of the behavior of printed fluids on an impermeable 
substrate.  For example, the surface and footprint of inkjetted lines 
have been studied and optimized.[4, 5]  Regarding two 
dimensional printed films, Tekin et. al. optimized the inkjet 
printing of polystyrene films.[6]  They found that printing several 
spatially-offset layers at sufficiently low print head velocity leads 
to more uniform dried films.  By choosing a two solvent mixture 
with differentiated vapor pressures they were able to avoid mass 
transfer to the film edge, known as the coffee ring effect.  This 
work does not dwell upon such drying effects, but rather is 
concerned with the shape of beads during and shortly after a print.  
Kang et. al.[7] used a one dimensional geometric approach to 
model basic printed film properties including thickness and fluid 
bulging beyond an intended footprint.  In this work, we build upon 
the approach of Kang et. al. to understand and optimize the shape 
of patterned beads by examining inkjet-printed patterns under more 
general conditions including two-dimensional curvature and mass 
loss.   

Experiment 
We print our films with a custom-built, drop-on-demand 

inkjet printer.  It has a jetting frequency of 22.3 Hz  and a drop 
volume of 94.8 pL. In the first portion of this work we use an ink 
consisting of a polymer dissolved in a 1-hexanol (≥99.0%, from 
Fluka).  We chose a polymer commonly used as a dielectric in 
organic, solution-processed devices, specifically poly-4-
vinylphenol (PVP), MW ≈ 8,000 from Sigma Aldrich Co.[1, 8, 9]  
To prepare our ink, we mix 72 mg of PVP per milliliter of 1-
hexanol.  We mechanically agitate and then sonicate the solution 
for ten minutes each, at which point the PVP powder is fully 
dissolved. 

We print onto 5 cm by 7.5 cm rectangles of display-grade 
Corning 1737 glass.  Using a Kruss contact angle measuring 
system, we measure a quasi-static advancing contact angle (θadv) of 
26.0±1.5° and a receding contact angle (θrec) of 15.7±1.0°.   

We print our films in a raster-scan method, printing in both 
fast-scan directions as shown schematically in Figure 1.  In this 
work, we printed lines with a 50 µm drop spacing.  When building 
a rectangle, line-by-line, we either keep line spacing constant or 
use a geometric approach to determine the next line’s optimal 
location as will be discussed later.  In this work, we print squares 
with side lengths ranging from 0.25 mm to 2.0 mm. 
 

 
Figure 1. Schematic of raster-scan pattern used to print films as viewed from 

above. 

For the second portion of this work, concerning rounded 
corners, we print 1-butyl-3-methylimidazolium tetrafluoroborate 
(‘BMT’) obtained from Sigma-Aldrich Co, chosen for its low 
vapor pressure and partial wetting.  We again use Corning 1737 
glass substrates, now roughened by hand using 1݉ߤ grade lapping 
paste to created a controlled contact angle hysteresis.  We clean the 
substrate by sonicating and then rinsing in order with deionized 
water, acetone and isopropanol, and drying after each rinse with a 
nitrogen gas gun.  We measure a quasi-static advancing contact 
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angle (θadv) of 26.9°±0.5° and a receding contact angle (θrec) of 
5.1°±3.6°.   

Raster scan printing 
A simple approach to printing a two-dimensional film, such as 

a square, is to print the feature by a raster-scan method, as shown 
in Figure 1, with a constant, identical spacing in both x and y 
directions.  Figure 2 shows 2.0 mm to 0.25 mm dried squares at 
their respective best-case constant drop spacing, showing minimal 
bulging and/or separation.  The border of dried beads in this and 
later figures is the most important feature in understanding the 
patterning of two dimensional shapes.  Each bead also shows a 
uniform interior and a “coffee ring” transfer of solute to its border.  
The precise nature of the coffee ring is a function of local bead 
shape and evaporation but is irrelevant to this work concerned with 
the patterning of two-dimensional beads during a print.  Recall that 
co-solvents can prevent this coffee ring deposit, but in this work 
we did not wish to further complicate our system by using an ink 
whose contact angle varies with local evaporation. 

Beginning with the 2.0 mm squares, we see that there is 
substantial bulging on the left-hand side of the 20 µm-spaced 
square where printing began.  Increasing the drop spacing to 30 
µm reduces this bulge, but the right-hand side is now separated 
into small, isolated beads.  The 1.0 mm and 0.5 mm squares show 
a similar transition in planform, from left-hand side bulging to 
right-hand side separation, although at larger spacings as the length 
scale shrinks.  Finally, the smallest 0.25mm squares show a large 
amount of rounding on all sides, deviating the most from a square 
footprint.  Thus, we see that a fixed spacing printing method is not 
viable for systems with a narrow contact angle hysteresis.   

 
Figure 2.  Squares printed at constant horizontal and vertical drop spacing as 

noted.  Side lengths (clockwise from top left):  2mm, 1mm, 0.25mm, 0.5mm. 

Model for the droplet shape 
A concise explanation for the deviations from squareness seen 

in Figure 2 can be made by examining a bead’s maximum contact 
angle as it is printed, line by line.  In order to estimate a printed 
bead’s contact angle, we require a mathematical model for its 
surface.  The contact lines of the bead are assumed to be pinned to 
the edges of a 2a by 2b rectangle as shown in Figure 3.  We use a 
small slope approximation to find an analytic approximation for 
the surface of our printed bead because of the small advancing 
contact angle.  We further assume that the bead’s moving contact 
line is sufficiently slow that it advances at the quasi-static θadv.   

 
Figure 3.  Top view and cross section of bead surface. 

The Young-Laplace equation and hydrostatic pressure 
determine the surface of our quasi-static rectangular bead, and here 
we develop an analytic solution.  Because our ink-substrate system 
has a low contact angle, with errors vanishing as the square of the 
slope, we may approximate the curvature of the surface  ݖ ൌ
,∗ݔሺ∗ݑ  The pressure at any point at the bottom of the  .∗ݑଶ׏ ሻ by∗ݕ
bead, pb in Figure 3, is the sum of the ambient, Young Laplace, 
and hydrostatic pressures as given in Eq 1 below.  

pୠ ൌ p୥ ൅ ρg ݑ∗ሺݔ∗, ሻ∗ݕ െ γ׏ଶݑ∗ሺݔ∗,  ሻ  (1)∗ݕ
Assuming an equilibrium bead with constant base pressure, 

the resulting boundary value problem for |ݔ| ൏ 1 and |ݕ| ൏  is as ߚ
follows, after appropriate non-dimensionalization.  We define the 
bead’s Bond number as ݋ܤ ≡  .ߛ/ଶܽ݃ߩ

ݑଶ׏    െ ݑ ݋ܤ ൌ െ1   (2a)  

,ሺേ1ݑ ሻݕ ൌ 0     (2b)  

,ݔሺݑ േߚሻ ൌ 0   (2c)  
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Expanding both sides of Eq. 2a in a double Fourier series, we 
obtain the following solution:  
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Figure 4 shows the maximum bead contact angle, θmax, 
calculated from Eq. 3 as a 2mm square is printed, line by line, 
which we find useful in explaining the printing behaviors in Figure 
2.  (The maximum contact angle is found at the center of the 
longest side of the rectangular bead.)  Each additional line 
introduces an additional ink volume of the drop volume times 
length divided by drop spacing.  In Figure 4, we see that the early 
bead’s maximum contact angle begins at a large value, well above 
the advancing contact angle, and decreases monotonically as each 
new line is added.  The bulging on the left side of squares in Figure 
2 is due to the initial region of lines printed with the bead’s θmax 
above θadv.  As more lines are printed, the bead then goes through a 
régime where additional lines maintain θmax between the advancing 
and receding contact angles.  With the printing of sufficient lines, 
θmax may fall below θrec at which point the bead’s edge will retreat 
until its maximum contact angle rises to θrec.  Because the right 
side is printed most recently, its contact line has seen the least 
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evaporation and retreats most readily.  When the edge retreats, new 
lines may no longer reach the principal bead and separation may 
occur, as seen in the right side of many Figure 2 squares.  
Unfortunate beads, like the 0.5 mm square printed at a 50 µm 
spacing, may experience both left-hand side bulging and right-
hand side separation.  

 
Figure 4.  Maximum bead contact angle calculated from Eq. 3 versus bead 

width for specified constant drop spacings (same in both fast and slow print 

directions) for a 2 mm square.  Each point represents an additional printed 

line.   

Variable line spacing 
As was demonstrated and explained in section 4, a rectangular 

bead’s maximum contact angle, θmax, will vary with each 
additional line if a constant line spacing is used.  This leads to 
undesirable bulging and separation when the contact angle falls 
outside of the range between θrec and θadv.  A practical solution to 
this problem is to print each additional line at a spacing such that 
the bead’s maximum contact angle remains constant as the feature 
is created.  Figure 5a outlines the algorithm we implemented for 
generating such optimal spacings for a printed rectangle. 

 
Figure 5.  a) Spacing-generating algorithm for printing a rectangle, b) surface 

and contour plots of a 2mm square in progress.  (Each contour line represents 

one sixth of height.) 

In order to print a rectangle of specified width and height 
while maintaining a specified θmax, we begin by finding the width 
of a single line’s worth of drops that will have the requested θmax 
according to Eq. 3.  The volume used in this calculation is the drop 
volume times the number of drops required to complete the fast-
print line less evaporation that occurred while that line was printed.  
For expediency, we use an empirically-based fit for evaporative 
loss at a specified number of drops.  After finding the width of this 
first line, we store this number and increment the bead volume by 
the volume of another lines worth of drop, less evaporation.  We 
continue repeating this width calculation with increasing volume 
until the entire rectangle has been spanned.  A final script converts 
this list of widths to a jetting script for our drop-on-demand printer. 

For squarest squares, we set the printing θmax at θadv.  As the 
contact angle is largest at a side’s center and decreases towards the 
corners, this maximizes the length of contact line between θmax and 
θrec without risking bulging.  With θmax set at θadv and other input 
parameters set to the values from the experimental section, we 
were able to run our algorithm for a variety of rectangles.   

Using our algorithm to find optimal line spacings and 
generate printer files, we printed an array of squares sized 0.5 mm, 
1 mm, and 2 mm.  We show the resultant dried patterns in Figure 
6.  Without evaporation compensation all three size scales separate 
and retreat from their designed footprint as seen in the leftmost 
column.  When additional volume is added to match evaporation, 
all three beads print intact.  The largest square remains closest to 
its desired footprint while the smaller ones have progressively 
worse corner curvature where the bead has withdrawn from the 
corner towards its center. 

 
Figure 6.  Squares printed using algorithm-generated spacings with 

evaporation compensation and pre-printed border as noted. 

Comparing the four corners of each smaller square, we see 
that the top left corner is the furthest from the drop center.  
Apparently, this corner is the most pinned.  Our prints begin at the 
corner and proceed down, indicating that here the timescale for 
contact line pinning due to drying is on the same order as that of 
the print time.  By deliberately pre-printing and drying a feature’s 
border, we were able to improve its footprint.  We pre-printed 
isolated drop borders and allowed them to dry before returning to 
print the square beads themselves, as seen on the right side of 
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Figure 6.  The third column of this figure shows that pre-printed 
edges lead to enhanced squares.  The pre-dried edges have a 
greater contact angle hysteresis than when printing on the clean 
substrate and thus permit a planform that is less circular and has 
sharper corners. 

Corners 
Differentiating Eq. 3 reveals that the contact angle falls to 

zero as the contact line approaches a perfectly sharp corner.  We 
hypothesize that a drop will be stable if the contact angle ߠ around 
the entire contact line remains within the limiting values of 
advancing and receding contact angles, or  ߠோ ൑ ߠ ൑  ஺.  We alsoߠ
assume that for a drop pinned on particular boundary, the 
maximum contact angle will be the advancing contact angle and 
the minimum contact angle will be the receding contact angle.  
Therefore for a given drop we are most interested in the maximum 
and minimum contact angle around a drop boundary, ߠ௠௔௫  and  
 .௠௜௡ߠ

Using Eq. 2a, we built a finite element model and applied it to 
square-ish beads with circular arcs fitted into the corners.  Some 
examples showing how the contact angle varies around the 
boundary of squares with various amounts of corner rounding are 
shown in Figure 7.  The contact angle maxima ߠ௠௔௫, of each 
square occur half way along the edge, and the minima ߠ௠௜௡, occur 
at the corners. There are two limiting cases; when ݎ ൌ 0 and when 
ݎ ൌ 0.5.  When ݎ ൌ 0.5, the drop takes the shape of a circular drop 
with constant perimeter contact angle.  When ݎ ൌ 0, the perimeter 
contact angle falling to zero in the bead’s corners.  In Figure 7, we 
computed the contact angles around boundaries with ݎ ൌ
0.15, 0.3, 0.5 with our numerical model. 

  
Figure 7. Contact angle around drop contact line for various shape drops. The 

plot follows the boundary counter-clockwise starting at the dots. 

Figure 8 show a representative square bead printed with the 
BMT-polished glass system with its constant, time-invariant 
contact angle hysteresis.  The line spacings used to generate the 
bead were calculated using the spacing-generating algorithm 
outlined in the previous section. We see that the corners do retreat 
approximately as circular arcs, as predicted above. 

 
Figure 8. Rounded 2mm BMT square bead 

Figure 9 shows extracted experimental results plotted against 
numerical predictions for a broad range of bead sizes.  For the 
experimental data, ݎ∗ was taken as the average of the four corners.  
A key prediction of the numerical model is that ݎ∗ is independent 
of drop size.  Figure 9 shows that over nearly one order of 
magnitude in edge length there is no significant variation in ݎ∗.   
As the dimensional edge length ܽ is decreased, ݎ∗ increases.  This 
behavior is likely due to the corner rounding becoming limited by 
the jetted drop size.  We expect the jetted drop size to more 
strongly influence the corner rounding as the overall size of the 
drop is decreased.  This seems reasonable as the smallest drop 
(ܽ ൌ 125 µm) was printed using only four jetted drops. 

 
Figure 9.  Corner radius r* plotted against dimensional edge length, numerical 

and experimental results both plotted. 

Conclusion 
We have demonstrated and then overcome difficulties in 

inkjet printing a patterned, two dimensional film with narrow 
contact angle hysteresis.  A fixed line spacing approach leads to a 
varying bead contact angle as new lines are printed, creating first 
bulging and later bead separation.  We developed and implemented 
an algorithm to find the spacing that will maintain a bead’s contact 
angle as it is printed by appropriately adjusting line spacing.  We 
found that it is necessary to compensate for evaporation as the 
print progresses to maintain the optimal contact angle.  Using our 
spacing generator with evaporative compensation, we 
demonstrated printed squares with footprints superior to those 
printed at fixed spacing over a range of length scales.  By seeding a 
feature’s edge with isolated dried drops, we were able to further 
improve a feature’s footprint.  However, pre-printing a feature’s 
border introduces a manufacturing cost akin to the printing of an 
additional layer.  We must print the border, wait for the isolated 
border drops to dry (on the timescale of milliseconds), and then 
proceed with the printing of the feature. 

Finally, we utilized a non-volatile ink to demonstrate the 
receding contact angle imposed limit on corner sharpness in 
rectangular beads.  Our experimental results are in agreement with 
simulation. 
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