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Abstract 
Research on drop on demand (DOD) inkjet drop formation of 

polyethylene oxide (PEO) aqueous solutions was conducted.  

Based on the technique developed by our group, the whole inkjet 

printing process from ejection to formation of drop(s) was studied.  

An imaging system with an interframe time of 1 µs and a spatial 

resolution of 0.81 µm/pixel was used to visualize the DOD drop 

formation process for a series of poly ethylene oxide (PEO) 

aqueous solutions with molecular weight ranging from 14,000 

g/mol to 1,000,000 g/mol and concentration ranging from 0.005 

wt% to 10 wt% jetting from a nozzle orifice with a diameter of 53 

µm The dynamics of DOD drop formation was analyzed in detail 

based on the experimental results.  

The addition of a small amount of PEO to fluids may have a 

significant effect on the DOD drop formation process, depending 

on PEO molecular weight and concentration. The effects are 

ascribed to fluid elasticity associated with the addition of polymer.  

Introduction 
Patterning of polymers on a small scale is of great importance 

in many areas of modern science and technology, with the 

applications ranging from the production of integrated circuits, 

information storage devices, and display units to the fabrication of 

micro-electromechanical systems (MEMS), miniaturized sensors, 

microfluidic devices, biochips, photonic bandgap crystals, micro-

optical components, and diffractive optical elements [1]. 

Depending on the requirements of applications, various patterning 

methodologies, such as writing [2], self-assembly [3] and 

replication [4], are used.  Inkjet printing is a type of writing. 

Compared to other methods of patterning, inkjet printing has many 

advantages such as the high flexibility in deposition area, materials 

and substrates. Inkjet printing has become one of the ideal choices 

in many cases of polymer patterning. Although inkjet printing 

technology has been successfully used into a variety of polymer 

patterning applications [5], the effect of polymers on Drop-On-

Demand (DOD) drop formation is still not yet fully understood. 

 Previous research has been focused on the drop formation of 

polymer solutions in continuous jetting and dripping mode. 

Christanti et al. [6, 7] investigated the influence of polymer (PEO) 

on jet stream break up for continuous jetting. They found that both 

the polymer molecular weight and polymer concentration affect the 

breakup dynamics, and showed that solutions with higher 

extensional viscosity and relaxation time are more effective at 

retarding break up. Tirtaatmadja, Mckinley and Cooper-White [8] 

investigated the dynamics of drop formation and pinch-off for a 

similar series of PEO solutions in the dripping mode. Tirtaatmadja, 

Mckinley and Cooper-White [8] investigated the dynamics of drop 

formation and pinch-off for a similar series of PEO solutions in the  

dripping mode. Low viscosity elastic fluids had similar shear 

viscosity and surface tensions, but differed substantially in 

viscoelastic properties. The viscous and elastic stresses were 

irrelevant prior to the rapid formation of the pinch region, during 

which the dynamics were controlled by an inertial-capillary 

balance.  However, the rapid decrease in the radius on approach to 

break-off produced large increased in the extension rate and elastic 

effects became important.  They demonstrated that even at very 

dilute concentrations, the polymer molecules can be highly 

extended during the approach to the pinch region.  As a result, the 

elastic stress grew to match the capillary pressure, preventing the 

neck from breaking off. 

The results of the investigation discussed in paper provide 

information on the drop formation process of PEO aqueous 

solutions and are useful in formulating inkjet ink containing 

polymer, which may lead to improvement in inkjet printing quality 

and polymer patterning control. 

Experimental 

Visualization System 
The method used for visualizing on the DOD drop formation 

is based on flash photography, and the setup developed by Dong el 

al. [9] was utilized. The camera, laser system and print head 

(nozzle orifices having a diameter of 53 µm) are fastened on an 

optical table to minimize vibration. By synchronizing the pulsed 

laser, CCD camera with the inkjet print head, sharp images 

(interframe time of 1 µs and a spatial resolution of 0.81 µm/pixel) 

of drop formation can be obtained.   

Materials 
The inkjet inks used for the experiments were dilute aqueous 

polymeric solutions. The polymer primarily used was poly 

(ethylene oxide)/PEO which were purchased from Sigma-Aldrich 

with viscosity molecular weights of 14k, 35k, 100k, 300k, 1000k 

g/mol. 

The solutions (weight concentration, c, ranging from 0.005% 

to 10%) were prepared by mixing distilled water with PEO at room 

temperature and were held for at least 48 hours before using.  The 

composition and basic properties of some of the PEO aqueous 

solution are given in Table 1.  The addition of PEO increased the 

shear viscosity at all molecular weights, but the change was small 

for the dilute solutions. 
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Table 1 Composition and basic properties of PEO aqueous solutions
 

The critical overlap concentration, c*, is defined as the 

concentration at which the polymer coils start to overlap with each 

other.  For c/c* < 1, the solution is considered to be in the dilute 

regime and the viscoelastic properties of the solution are assumed 

to be governed by the behavior of a single polymer molecule. In 

order to determine c* of the polymer solutions studied, the theory 

of Flory for flexible polymer solutions was used: 

 

c* = 1/[η]                                                                                      (1) 

 

where [η] is intrinsic viscosity with units of cm3/g.  

For the polymer solutions, [η] was calculated using the Mark- 

 

Figure 1 Images of DOD drop formation of distilled water. Driving voltage 
= 44.2 V, frequency = 20 Hz. Images begin at 0 µs when liquid emerges 
from the nozzle and are shown for every 10 µs through 100 µs. 

Houwink-Sakurada (MHS) equation: 

[η] = AMw
α                                                                                   (2) 

 

where Mw is molecular weight with units of g/mol.   A and α were 

assume to be 0.0063 and 0.65, respectively, as recommended by 

Tirtaatmadja et al. [10] for PEO solutions. 

The properties of the inks were characterized using available 

equipment at Georgia Tech. The static surface tension was 

measured using a Kruss bubble pressure tensiometer BP21was 

used to measure the static surface tension. The shear viscosity of 

the liquids was measured using a Brookfield DI-V+ Viscometer 

with LV spindle set. 

 

 

 

 
Figure 2 Images of DOD drop formation of aqueous solution containing 
PEO with molecular weight of 300,000 g/mol, concentration of 0.01wt% 
and c/c* = 0.03. Driving voltage = 44.2 V, frequency = 20 Hz. Images begin 
at 0 µs when liquid emerges from the nozzle and are shown for every 10 
µs through 100 µs. 

Mw (g/mol) c (wt%) [η] c/c* ηs (mPa•s) η (mPa•s) σ  (mN/m) 

100,000 0.01 128.0 0.013 1.06 1.12 66.6 

300,000 0.01 261.5 0.026 1.06 1.13 69.2 

300,000 0.02 261.5 0.052 1.06 1.16 65.9 

300,000 0.05 261.5 0.13 1.06 1.26 65.8 

300,000 0.10 261.5 0.26 1.06 1.30 65.9 

1000,000 0.01 571.9 0.057 1.06 1.13 72.7 

t(µs)  20  40  60  80  100 t(µs)  20  40  60  80  100 
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Results and Discussion 
The effect of the addition of PEO depends on both molecular 

weight and concentration.  For the 14,000 and 35,000 g/mole PEO, 

the effects are much smaller than those of the larger molecular 

weight polymers.  For example, even for c/c* ~ 1, the changes in 

breakup time, tb, and drop speed, v, were small (tb increased from 

31 µs to 32 µs, and v decreased from 6.9 m/s to 6.8 m/s). 

Data for PEO having molecular weights of 100k, 300k and 

1000k g/mol revealed that the effects of polymer increases 

significantly with PEO molecular weight.  At low concentration, 

the effects of 100k g/mol PEO were small compared to those of 

300k and 1000k g/mol PEO. The effects of the PEO with 

molecular weight of 1000k g/mol were so large that the ejected 

liquid did not pinch off from the nozzle for concentrations of 0.02 

and 0.05 wt%, and thus no drop was generated.   

Image sequences of drop formation for distilled water and an 

aqueous solution of 300k g/mol PEO at a concentration of 0.01 

wt% are shown in Figures 1 and 2. The breakup time for PEO 

aqueous solution was about 63 µs, compared to a breakup time of 

28 µs for distilled water. Satellite formations are also different. For 

distilled water, the free liquid thread exhibited a clear and quick 

breakup, which led to four satellites.  For PEO aqueous solution, 

capillary breakup of liquid threads slowed down due to the 

existence of polymer and bead-like structures were generated along 

the thread, which were connected by secondary threads. These 

were connected by secondary threads that eventually broke up, and 

four or more satellites were formed. After the satellites were 

generated due to the capillarity, they recombined into one major 

satellite at about 100 µs, compared to two major satellites which 

were generated during the DOD drop formation of distilled water.  

The leading point, which is the leading edge of the material 

ejected from the nozzle which eventually becomes the leading edge 

of the primary drop, is plotted versus time for distilled water and 

PEO aqueous solution in Figure 3. The two leading point curves 

were almost identical for times up to about 30 µs. Thus the 

velocities of the leading points were almost the same during the 

ejection stage of drop formation. As the liquid was stretched, the 

velocity of the leading point of PEO aqueous solution decreased. 

As a result, the primary drop speed of PEO aqueous solution was 

much smaller than that of distilled water (7.5 and 6.2 m/s, for 

distilled water and PEO aqueous solution, respectively). 

Apparently the polymer chains are not appreciably oriented and 

stretched during the ejection stage of drop formation. Once the 

ejection stage is over, the ligament attached to the nozzle is 

stretched due to the momentum of the liquid.  The stretching 

causes the polymer molecules to become oriented and stretched in 

the flow direction, creating an elastic stress which reduces the 

speed of the leading point.  The elastic stress in the ligament resists 

the capillary force tending to pinch off the ligament, delaying 

pinchoff. When PEO concentration is sufficiently high, pinchoff 

does not occur. If pinchoff occurs, the primary drop size is 

insignificantly affected by polymer concentration and/or molecular 

weight.  Apparently primary drop size, for a given voltage and 

surface tension, is determined by nozzle pressure in the initial 

phase where elasticity effects are small. 

Hoyt et al. [10] suggested that the addition of polymer to the 

ink can reduce the number and size of satellites. The PEO data 

reported here support their observations; however, breakup time is  

Figure 3 Leading point curves of drop formation process for water and 

PEO aqueous solution containing PEO  with  Mw of 300k g/mol and 

concentration of 0.01wt%. Driving voltage=44.2 V and frequency=20 Hz. 

increased and drop speed is decreased. Also, a longer breakup time 

lowers the maximum rate of jetting frequency. When the weight 

concentration of 300k g/mol PEO reached 0.05%, there were no 

obvious satellites formed, but drop speed was reduced to 1.1 m/s. 

During the stretching of the liquid, the relative rates at which 

two opposing phenomena occur are important in determining the 

degree to which the polymer affects DOD drop formation. The 

elongation of the liquid column causes the polymer chains to be 

stretched and oriented. At the same time, Brownian motion 

disorients the polymer chains. After the liquid is ejected from the 

nozzle and before pinchoff occurs, the polymer chains are 

stretched and oriented. As a result, an elastic stress develops in the 

liquid column and resists capillarity-driven pinching off from the 

nozzle and is responsible for the decrease in drop speed and longer 

breakup time. 

Conclusions 
The addition of PEO increases the shear viscosity at all 

molecular weights, but the change is small for dilute solutions.  

However, the addition of a small amount of PEO can have a 

significant effect on the DOD drop formation process, increasing 

breakup time and decreasing primary drop speed and the number 

of satellites. The effects of polymer depend on both molecular 

weight and concentration.  At lower molecular weights, the effect 

of PEO over the dilute solution regime was small when the drop 

formation process for the dilute solution was compared with that of 

a Newtonian liquid having similar shear viscosity, and the effect of 

PEO was small even at concentrations large enough that the 

solution does not fall in the dilute regime. 

As molecular weight is increased, the effects of PEO on the 

DOD drop formation process increase significantly, and the effects 

depend on concentration.  These effects are explained by the fluid 

elasticity which increases with increasing in molecular weight and 

concentration. When the liquid jets out of the nozzle, the polymer 

chains are stretched and oriented. As a result, an elastic stress 

develops in the liquid column and resists capillarity-driven 

pinching off from the nozzle and is responsible for the decrease in 

drop speed and longer breakup time. 
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Inks having the similar properties including shear viscosity, 

which is widely measured by ink jet industry, can behave quite 

differently in DOD drop formation.  In addition to the parameters 

normally used to characterize inkjet inks, viscoelastic properties 

that correlate with DOD inkjet drop formation are needed when 

polymers are added to the ink. 
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