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Abstract 
We report for the first evidence of flow-induced polymer 

degradation during inkjet printing for both 
poly(methylmethacrylate) and polystyrene in good solvent which 
has significance for the deposition of functional and biological 
materials. 

Introduction 
Ink-jet printing has developed as an important technology for 

the defined spatial deposition of polymer solutions in applications 
as diverse as graphics, textiles, digital electronics and displays (1-4)  

where the polymer may function in the role of dispersant (5), binder 

(6) or functional material (7). It has long been recognised that the 
addition of polymer to an ink has a strong impact on the nature of 
the drop generation and ejection process, with the drop break-up 
behaviour being in part related to the strain hardening resulting 
from the presence of polymer passing through a strong 
elongational flow field (8-12). The microrheological explanation for 
strain hardening is the sudden transition of the polymer chain from 
a coiled to a stretched state, which is accompanied by a strong 
increase in the hydrodynamic drag. The coil-stretch transition 
occurs for linear polymers at a critical strain rate (εcrit) where the 
rate of deformation of the chain exceeds its rate of relaxation so 
that it passes from a slightly distorted random coil to an extended 
state, This critical condition is achieved when the critical 
Weissenberg-number (Wecrit = εcrit.τ1)  > 0.5, where τ1 denotes the 
longest relaxation time (13,14). For the inkjet process the strain rate 
at the nozzle tip is typically greater than 50,000 s-1, and as a 
consequence the critical Weissenberg-number is exceeded for all 
polymers having Mw > 50,000 Da at the pinch region, the point at 
which the ligament is attached to the nozzle tip meniscus (9,10).   

 
Flow induced deformations can also lead to irreversible 

change in the structure of a complex fluid. The mechanical 
degradation of polymers in elongational flow fields has long been 
recognised and can lead to a reduction in average polymer 
molecular weight (15-17). The passage through an elongational flow 
field exerts strong hydrodynamic forces upon a coiled polymer 
molecule in solution as it stretches orients and extends in the 
direction of flow. If the elongational forces on the molecule are 
sufficiently strong, and the rate of chain stretching far exceeds the 
rate of chain relaxation, the polymer backbone can be broken (18). 

 
Here we report the first observation of and conditions for the 

mechanical degradation of polymer molecular weight under 
conditions of drop on demand inkjet printing. These observations 
have implications with respect to the printing of functional and 
biological materials where retention of polymer composition is 
critical. 

 

Experimental 
Materials 

All solvents, linear atactic poly(methyl methacrylate) 
(PMMA; Mw =  145 – 1630 kDa, polydispersity (PDi) ≤ 1.3 and 
Mw = 909, PDi = 1.8) and polystyrene (PS; Mw 123 – 2000 kDa, 
PDi ≤ 1.3 and Mw = 900 kDa, PDi = 1.9) were obtained from 
Sigma Aldrich UK and used as received. Solutions were prepared 
by gentle agitation and allowed to stand for 24 hours before use. 
Prior to inkjet printing samples were filtered through a glass 
microfibre filter (diameter 47 mm, 0.26 mm thick, 1.2 μm 
retention and filtration speed of 100/100 ml), after which there was 
no change in either solution viscosity (+/- 0.1 cP at 25 oC) or 
determined polymer molecular weight and distribution. 

 
Instrumentation 

Ink-jet printing was carried out using both a MicroJet TM 
drop-on-demand dispensing device (Microfab, MJ-AB-01) and a 
Dimatix DMP-2800 inkjet printer (Fujifilm Dimatix, Inc., Santa 
Clara, USA). The MicroJet TM dispenser consists of a 50 μm 
internal diameter glass nozzle with a piezoelectric actuator sleeve 
driven by an external power supply. A bipolar waveform, with a 3 
μs rise time, 40 μs duration and 3 μs decay followed by a 3 μs 
echo and 3 μs rise, was employed with an external drive frequency 
and voltage of 4000Hz. and 30 to 60V respectively. To prevent 
nozzle tip wetting and to create reproducible printing conditions, 
the glass capillary was regularly cleaned with a 20 wt.-% solution 
of potassium hydroxide in demineralized water and rigorously 
flushed with the appropriate jetting solvent. The Dimatix DMP-
2800 was fitted with a waveform editor and a drop-watch camera 
system which allows manipulation of the electronic pulses to the 
piezo jetting device for optimization of the drop characteristics as 
it is ejected from the nozzle. The nozzle plate consists of a single 
raw of 16 nozzles of 23 μm diameter spaced 254 μm with typical 
drop size of 10 pl and drop diameter 27 μm. All results are the 
average of at least three runs under each experimental condition.  

Results and Discussion 
Inkjet Printing of Polymer Solutions 

Clear miscible solutions of PMMA in γ-butyrolactone and PS 
in γ-butyrolactone and tetralin were prepared. Solvents were 
chosen on the basis that they are classified as good solvents having 
relative Energy Difference (RED) numbers (19) in the range 0.6 – 
0.9. Boiling points are in the range 204 - 208 oC enabling sustained 
inkjet printing at room temperature without significant nozzle 
blockage. For each polymer - solvent combination the overlap 
concentration c* was defined using the classification of Flory (20) 
for a flexible polymer in solution, c* = 1/[η] and polymer 
concentration expressed as a reduced concentration [η].c or c/c* 
(21).  
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Solutions of PMMA and PS in γ-butyrolactone were prepared 
at reduced concentration = 0.15, 0.33, 0.5, 0.75, 1.0. For all fluids 
low shear viscosity and surface tension were in the range 1 – 10 cP 
and 29 – 40 mN/m at 25 oC respectively, indicating that they are 
suitable for inkjet printing (22). Despite this it was not possible to 
inkjet print all fluids using either the Microfab or Dimatix print 
head, it being noted that both PMMA and PS showed comparable 
behaviour at equivalent molecular weight although it should be 
noted that the maximum reduced concentration evaluated was 
unity and it is probable that for lower molecular weight polymers 
the threshold concentration will indeed be higher as previously 
reported (12). We observe that as molecular weight increases it 
become increasingly more difficult to jet higher concentration 
fluids (23).  

 
The longest polymer chain relaxation time is typically 

described by the Zimm non-free-draining relaxation time, λz  = 
ηs[η]Mw/RT (1,24); where ηs is the viscosity of the solvent, [η] is the 
intrinsic viscosity of the polymer solution and Mw is the weight 
average molecular weight. The apparent universality of Zimm 
behaviour is believed to arise either from the fact that elongational 
flow experiments only probe the dynamics of the partially 
stretched coil (25), or that the coil-stretch transition is essentially 
non-equilibrium since molecules only experience a finite residence 
time in the flow field (26). Since the critical strain rate (εcrit) for 
deformation from a slightly distorted random coil to an extended 
state is exceeded for all polymers studied then strain hardening 
results in a rapid increase in fluid viscosity. Since maximum 
relaxation time (λz) scales as Mw

1.6-1.7 for a random coil polymer in 
a good solvent then at high molecular weight it can be very long 
indeed exceeding the time scale for ligament detachment from the 
nozzle tip meniscus which for the Microfab printhead is between 
80 – 90 μs irrespective of applied voltage. The residual 
viscoelasticity within the ligament therefore resists drop break-up 
being amplified for very high molecular weight polymer at lower 
than overlap concentration where resultant chain entanglement of 
the partially relaxed chains can damp out fully drop break up.  

 
Molecular weight Degradation 

For each fluid, drop ejection velocity (v) was determined 
stroboscopically 12), and the strain rate at the nozzle tip (ε) 
calculated using ε = v/D where D is the nozzle diameter (24). 
Molecular weight and distribution for all samples were determined 
before and after printing. Unless specified otherwise all results are 
for polymer in γ-butyrolactone with equivalent results being 
observed in both acetophenone and tetralin. 

 
Fluids were jetted through the Microfab single nozzle glass 

capillary, 50 μm internal diameter, at 50 V with drop velocity 
between 2.5 – 5.5 ms-1 giving a calculated elongational strain rate 
at the nozzle tip between 50,000 – 110,000 s-1. All polymers 
having a PDi ≤ 1.3 showed no change in molecular weight and 
distribution. However both PMMA 909 kDa, PDi = 1.9 and PS 900 
kDa, PDi = 1.8 show reproducible broadening in molecular weight 
distribution and a shift to lower molecular weight the nature of 
which is dependant upon the reduced concentration of the fluid, 
Figure 1.  

 
Figure 1: Effect of reduced concentration on molecular weight 
distribution (WF/dLogMwt against log mol wt) before and after single 
pass jetting for PMMA 909 kDa (top) and PS 900 kDa (bottom) in γ-
butyrolactone jetted at 50V using a Microfab Printhead at 25 oC. 
Before jetting (—). After jetting c/c* = 0.15 (– · – ), c/c* = 0.33 (– – ), 
c/c* = 0.5 (— —). 

 
Molecular weight degradation is more pronounced at low 

reduced concentration with no degradation being observed at c/c* 
= 0.5 at 50 V for PS 900 and at c/c* = 0.75 for PMMA 909. It is 
noted that not all the distribution appears to undergo molecular 
weight degradation and repetitive jetting of PMMA 909 kDa at 
c/c* = 0.33 shows no significant reduction in molecular weight 
although a slight broadening to low molar mass was observed. 

 
For solutions of PMMA in γ-butyrolactone and PS in γ-

butyrolactone and tetralin were prepared ink jet printed through a 
Dimatix DMP-2800 10 pl nozzle, 23 μm internal diameter droplet 
velocities were between 6.0 – 10.0 ms-1. As a consequence of the 
smaller nozzle diameter higher elongational strain rates are 
experienced; 200,000 – 300,000 s-1. Only single pass experiments 
were performed and for low polydispersity PMMA and PS we 
observe molecular weight degradation for polymers having Mw = 
145 – 590 kDa  Mw = 290 – 650 kDa respectively but only for the 
most dilute solutions, c/c* = 0.15, Figure 2. The highest molecular 
weight sample tested PMMA 1390 kDa, PDi = 1.16 did not show 
molecular weight degradation under any of the conditions tried. In 
all cases the polymer chains break essentially at the middle of the 
chain leading to an approximate halving of molecular weight. 
PMMA 909 kDa, PDi = 1.9 and PS 900 kDa, PDi = 1.8 showed 
reproducible broadening in molecular weight distribution and a 
shift to lower molecular weight only at c/c* = 0.15, because higher 
concentrations are at the limit of jet ability. 
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Figure 2: (WF/dLogMwt against log mol wt) before and after single 
pass jetting for low polydispersity PS in tetralin at c/c* = 0.15 jetted 
at 18-26 V using Dimatix 10pl DMP Printhead at 25 oC. Before 
jetting (—).Single pass jetting (– – ). (a) Drop shape in Microfab at 
drop break off for 650 kDa at c/c* = 0.15 and c/c* = 0.33. 

 
As previously discussed the mechanical degradation of 

polymers in elongational flow fields generated by several different 
geometries has long been recognised and can lead to a reduction in 
average polymer molecular weight (15-17). Early work on cross-slot 
devices, which generate an opposing-jets geometry, require a large 
number of passes through the system to observe chain-scission 
since only a small percentage of the polymer solution passes 
through the stagnation point at any one time  (15,6,27-29). Conversely 
transient elongational flows imposed by sudden contractions have 
been reported to lead to molecular weight degradation of the whole 
distribution after a single pass, under a continuously applied 
pressure, for solutions of polyethylene oxide, polyacrylamide and 
polystyrene in the semi-dilute regime, c/c* = 1.5 – 20 (30-33). Such 
configurations are characterised by both a high contraction ratio, 
typically > 35:1, long residence time in a typical elongational flow 
field of 45,000 s-1 giving a Deborah number (De), which is the 
ratio of the characteristic relaxation time of the polymer solution to 
the characteristic flow time of the system on the order of 550 (17,34) 
indicating the polymer chains are being stretched much more 
rapidly that they can relax.  

 
We can consider the inkjet printhead as a short residence time 

contraction in that the fluid is forced from the large diameter ink 
chamber through the nozzle constriction. The Microfab glass 
capillary represents a constriction ratio on the order of 10:1, whist 
for the Dimatix head the constriction ratio is unknown but believed 
to be of the same order of magnitude. Based upon average 
measured drop velocities the residence time of the fluid in the 
constriction is short, on the order of 10 μs, after which the fluid 
begins to relax as the ligament and droplet form. (12) 

 

In the case of low polydispersity polymers we only observe 
molecular weight degradation at elongational shear rates > 200,000 
s-1, for PMMA and PS having Mw = 145 – 590 kDa  Mw = 290 – 
650 kDa respectively which corresponds to De of the order 4 - 45 
but only in the dilute solution regime c/c* = 0.15. From drop 
visualisation these fluids show characteristic Newtonian behaviour, 
Figure 2a, outside this range showing behaviour consistent with a 
viscoelastic fluid, that is stable ligament formation and drop break 
off at the nozzle tip meniscus, Figure 2b. Within the dilute solution 
regime the forces required to break the chains are transmitted 
through viscous energy dissipation due to friction between solvent 
and polymer molecules. In this regime chain breakage can be 
induced either by overstretching when the strain rate increases well 
beyond the critical strain rate (εcrit), that is the stretching rate is 
high enough to exceed the rate of relaxation or by turbulance 
(9,10,28), it being shown that in dilute solution only those molecules 
that are virtually fully stretched can undergo central scission (30). 

 
PMMA 909 kDa, PDi = 1.9, PS 340 PDi = 1.8 and PS 900 

kDa, PDi = 1.8 show molecular weight degradation which is 
printhead (strain rate) and concentration dependant, with 
reproducible broadening in molecular weight distribution and a 
shift to lower molecular weight. The results are consistent with 
almost random scission along the chains inferring that the forces 
required to break the chain are transmitted either by valence bonds, 
i.e. network chains and junctions or discrete entanglements rather 
than by hydrodynamic interaction. Greater broadening is observed 
at low polymer concentration where we approach the concentration 
where chain interaction in elongational flow (c+) is not possible 
(31). 

Conclusions 
We report the first evidence of flow-induced polymer 

degradation during inkjet printing for both 
poly(methylmethacrylate) and polystyrene in good solvent which 
has significance for the deposition of functional and biological 
materials. Polymers having weight average molecular weight (Mw) 
either less than 100 kDa or greater than approximately 1,000 kDa 
show no evidence of molecular weight degradation. The lower 
boundary condition is a consequence of low Deborah number 
imposed by the printhead geometry and the upper boundary 
condition due to visco-elastic damping. For intermediate molecular 
weights the effect is greatest at high elongational strain rate at low 
solution concentration with higher polydispersity polymers being 
most sensitive to molecular weight degradation. For low 
polydispersity samples, PDi ≤ 1.3 chain breakage is essentially 
centro-symmetric induced either by overstretching when the strain 
rate increases well beyond the critical strain rate, that is the 
stretching rate is high enough to exceed the rate of relaxation or by 
turbulence. For higher polydispersity samples, PDi chain breakage 
is consistent with almost random scission along the chain inferring 
that the forces required to break the chain are transmitted either by 
valence bonds, i.e. network chains and junctions or discrete 
entanglements rather than by hydrodynamic interaction.  
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