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Abstract 
Metallic conductive inks used for printed electronics have a 

tendency to create low conductivity layers unless they are fully 

dried. Yet, even after the drying, conductivity can be further 

improved by a post-heat-cure process. A hot soft nip calender was 

modified to be able to place it in line with a flexographic printing 

press and to study the effect of calendering on electrical 

performance of printed conductive layers. Two print trials were 

performed on the Comco Commander Flexographic Press at the 

Western Michigan University (WMU) Printing Pilot Plant with the 

calender placed in line with the moving web of the press. Three 

substrates were employed, a commercial label paper, a folding 

carton boxboard and a polyethylene-terephthalate (PET) polymer 

film. Two inks, one containing silver flakes and the other silver 

nanoparticles, were employed to print conductive layers during the 

print trials. Traces (lines) were printed using a three-banded 

anilox roll, with different cell volumes, to study the effects of ink 

transfer. The results were analyzed to evaluate the effects of the 

design variables, calender nip temperature and pressure, anilox 

cell volume, ink and substrate on electrical performance of printed 

silver inks. 

The results showed that, for all inks and substrates, the 

electrical resistance is reduced at higher nip temperature and 

pressure, relative to that without calendering. Furthermore, the 

same resistance can be obtained with a lower anilox cell volume 

and calendering than with higher cell volume but without 

calendering. This translates to a higher ink mileage (lower ink 

usage) for the same electrical performance if the calendering is 

used. The economic benefits of this are large, because of the high 

cost of the silver inks. 

Introduction 
The advancement in functional materials, printing and 

electronics has led to the evolution of the new field of printed 
electronics. Conventional printing methods, very well known to the 
graphic art industry, such as screen, offset, gravure, flexography 
and inkjet printing are being used for manufacturing of electronic 
components. They provide an opportunity for high speed, low cost 
manufacturing and flexible electronic products1,2. However, there 
are certain limitations on functional material selection and ink 
formulation in terms of viscosity, particle size, drying and how 
material properties relate to final device performance. Each 
printing method has its requirements in material properties to run 
the printing press successfully. Functional materials are being 
printed onto flexible substrates to create a variety of devices that 
are used in electronic paper, wearable computers or sensors, 
conductive traces, resistors, antennae for wireless identification 
tags, and electrodes in printable batteries 2,3. 

Typical functional materials for printed electronics include 
conductive, semiconductive and dielectric inks. Conductive inks 
can be polymeric or metallic materials. In metallic conductive inks, 

a metallic nano or microparticle component (e.g., silver) is 
dispersed into a polymer vehicle4. The nanoparticle ink is usually 
cured by heat, which melts or sinters the particles into a continuous 
conductive layer and decomposes the vehicle4. The curing 
temperature is in the range of 210 °F to 750 °F and the curing time 
varies from 5 to 60 minutes, depending on the curing temperature. 
Other sintering methods include laser, microwave radiation or 
photonic curing. In microparticle inks, the solvent is removed 
during drying by heat to form a conductive layer. The drying is 
faster than nanoparticle inks, which make them suitable for 
printing at speeds up to several meters per second. However, the 
conductivity depends on the contact between particles and is lower 
than that obtained with sintered nanoparticle inks4. In either case, 
the use of largely off-line curing and drying methods is a detriment 
to productivity, 

For this study, the flexographic (flexo) printing method was 
employed to print conductive inks. Flexography uses relief image 
areas that are formed onto a polymer plate; image areas are raised 
above the non-image areas. The ink transfer in flexography is 
accomplished through anilox rolls. These rolls are engraved with 
small cells. The size of the cells controls the amount of ink 
transferred to the printing plate. The printing speed in flexography 
can reach up to 1500 ft/min.2 Inks used in flexography have 
viscosities in the range 25 to 100 cP. Materials chosen for flexo 
plates must be compatible with the solvent system used for 
functional inks to avoid any deterioration over the length of a print 
run2. 

This paper examines the effect of in-line calendering on the 
electrical resistance of conductive traces printed onto various 
substrates. In the calendering process, a substrate is pressed against 
a polished metal cylinder with controlled pressure and temperature. 
In hard nip calendering, the pressure is concentrated on the high 
points of the web, which results in a more uniform thickness of the 
web. Calendering can be done off-line, where the calender is a 
detached standalone unit, or in-line with the printing press, which 
is more productive, economic and cost efficient5. Most calendering 
is performed in-line with a paper machine and coater to improve 
the surface properties of paper for improving print quality5. 
Although calendering is commonly practiced by papermakers, the 
effect of in-line calendering on the properties of printed layers or 
printed conductive inks has not been studied or examined before. 
Recently6,7, the effects of off-line calendering on previously 
printed conducting traces were reported. These results suggested 
that the conductivity of traces could be improved with in-line 
calendering, thus eliminating the need for further post-treatment. 
This work grew from the observation that printed conducting 
traces often require a “post-cure”4,8,9, before reaching the best 
electrical performance (Figure 1) and that an increase in contact 
between metallic ink particles through the pressure of calendering 
could further improve conductivity. Off-line post-curing is a 
serious impediment to productivity; so identifying an in-line 
drying/curing method is of great importance for the success of 
printed electronics. The previous work and work reported here is 
towards specifying such a method. 

NIP26 and Digital Fabrication 2010 Technical Program and Proceedings 657



 

 

0

10

20

30

40

50

60

70

80

90

100

1 min 2 min 3 min 5 min 10 min 20 min 14 h

Im
p
ro
ve
m
e
n
t 
o
f 
C
o
n
d
u
ct
iv
it
y
 /
 %

Time

UV curable ink

Solvent based ink

Water based ink

 
Figure 1. Conductivity improvement of silver based inks with post-curing. 

Controlling ink drying/curing is crucial to achieving the main 
objective of manufacturing conductive traces printed onto flexible 
substrates with improved functional properties and surface 
smoothness5. Smoothness is an essential property, especially when 
several layers of functional materials are printed over each other. 
With calendering, the printed substrate is subjected to pressure in 
the z-direction and to heat from the calender roll. Due to this 
compression, calendered materials go through plastic and 
viscoelastic deformations that cause particle alignment in the ink 
layer and reduction in thickness, density, porosity, and roughness. 
In addition, raising the temperature of the substrate can further dry 
the ink layer and soften the ink resin to aid in particle alignment 
for increased particle contact. 

Experimental 
For this study the flexographic printing process was used to 

print conductive traces. Figure 2 shows a part of the design used 
for the evaluation of printed and calendered samples. Solid lines (1 
x 50 mm) were used to measure the effect of calendering on 
electrical performance (resistance). A solid patch (30 x 100 mm) 
was used to evaluate the effect of calendering on smoothness. 

The calendering unit was built and positioned in-line with the 
flexo printing press (Figure 3). In the following section, 
print/calender trials are described in more detail. 

A Comco Commander narrow-web 3 unit-flexographic press, 
located at the WMU Printing Pilot Plant, was used to print 
conductive traces. To study the effect of in-line calendering, a soft 
nip calender with the option to control pressure and temperature 
levels was used. Traces were printed onto three commercially 
available substrates: label paper, polyethylene terephthalate film 
(PET), and paperboard (CNB). Two ink systems were selected to 
compare their printability and performance at different calendering 
conditions: water base (WB) silver flake ink and solvent based 
nanosilver (Nano) ink. 

The design had traces printed in both machine direction 
(parallel with web path) and cross-machine direction. A banded 
anilox roll was used with three screen rulings, 120 lpi (Band A), 
180 lpi (Band B) and 220 lpi (Band C). The cell volume/unit area 
for band A is 18.6 µm or 12 BCM (Billion Cubic Microns per 
square inch)9. The cell volumes per unit area for bands B and C are 
15.5 µm (10 BCM) and 12.4 µm (8 BCM), respectively. Different 
cell volumes transfer different amounts of the ink from the anilox 
roll onto the printing plate and consequently onto the printed 
substrate. As a result, different ink layer thicknesses can be 

achieved. Multiple anilox cell volumes were chosen to determine if 
the calendering process could result in the need for less ink use. To 
verify this effect, the electrical resistances of the traces printed 
with the different anilox bands before and after calendering were 
compared. 

 
Figure 2. Section of a printed design. 

 
Figure 3. In-line set-up of calendering unit built and placed at the end of a 

flexographic printing press. 
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Pilot Trials Description 
Overall, two print/calender pilot trials were run and evaluated. 

Table 1 summarizes the run conditions for the first trial. To 
maintain good print quality and sufficient drying of the inks, a 
press speed of 100 ft/min for the WB ink and 50 ft/min for the 
Nano ink was maintained during the trials. In addition, during the 
pilot trials, the temperature of the substrate was monitored with an 
infrared non-contact thermometer. The temperature of the web was 
recorded before and after entering and exiting the calendering unit. 

Table 1. Run conditions for first pilot trial. 

 Calendering conditions 

Ink Substrate Temperature [°F] Nip Pressure [pli] 

CNB 75 (ambient) 50, 500, 950 

Label 75 (ambient) 50, 500, 950,1500 WB 

PET 75 (ambient) 50, 500, 950,1500 

PET 75 (ambient) 50, 500, 950 

Label 75 (ambient) 50, 500, 950 Nano 

CNB 75 (ambient) 50, 500, 950 

PET 104 500, 950,1500 

Label 104 500, 950,1500 WB 

CNB 104 500, 950 

CNB 104 500, 950 

Label 104 500, 950,1500 Nano 

PET 104 500, 950 

Label 140 500, 950,1500 
WB 

CNB 140 500, 950 

CNB 140 500, 950 

Label 140 500, 950,1500 Nano 

PET 140 500, 950,1500 

WB CNB 158 500, 950 

Nano CNB 158 500, 950 

Nano Label 176 500, 950,1500 

Label 176 500, 950,1500 

CNB 176 500, 950 WB 

PET 176 500, 950,1500 

The conditions for the first trial were set based on the 
conditions used in the preliminary studies performed on a sheet-fed 
calender, the results from which merited this work. After the first 
calendering study, it was recognized that the higher speed of the 
in-line calendering unit prevented the duplication of the sheet 
temperatures obtained on the sheet-fed calender. Sheet 
temperatures were lower because at the higher press speed, the 
sheet was in contact with the heat roll for a shorter period of time. 
So, the goal of the second trial (Table 2) was to increase the sheet 
temperature. The temperatures were raised stepwise to determine 
the maximum calendering temperature that both paper substrates, 
Label and CNB could withstand without any deterioration in their 
structure. The calendering pressure was fixed for each substrate. 
An additional drying unit was added before the calender to prevent 
sticking of the ink and coating to the calender as a result of the 
large temperature gradient. In commercial practice, the 
temperature gradient is avoided by placing the calender directly 
after the last dryer section, but due to the layout of the printing 
press that was used for this study, this could not be accomplished. 

Hence, the additional dryer better simulated what would be 
commercially practiced. 

Table 2. Run conditions for second pilot trial. 

 Calendering conditions 

Ink Substrate Temperature [°F] Pressure* [pli] 

CNB 75 (ambient) 50, 950 

Label 75 (ambient) 50, 1500 

Label 176 1500 

CNB 176 950 

CNB 194 950 

WB 

Label 194 1500 

Sample Evaluation 
The printed traces were characterized by measuring the 

electrical properties, roughness and print quality characteristics. 
The electrical properties of the printed traces were measured 
before and after calendering in terms of resistance (R), using a 
4338B Milliohmmeter. An ImageXpert image analysis system was 
employed to measure print quality in terms of line width and 
raggedness. The line width for 100% tone printed traces was 
measured at 10 different places and the average was reported to 
investigate the temperature and pressure effect on line width gain. 
An Emveco 210R stylus profilometer was used to measure the 
roughness of the printed ink films, before and after calendering 
according to TAPPI T575 standard. 

The effect of calendering temperature and pressure on 
resistance was studied and statistically analyzed by analysis of 
variance (ANOVA) and regression analysis, using Minitab 15. 
Table 3 shows a summary of all factors and their levels. 

Table 3. Analyzed factors and their levels. 

Factors Levels 

Calendering Temperature (°F) 75, 104, 140, 158, 176 

Calendering Pressure (pli) 50, 500, 950, 1500 

Bands (µm) 12.4, 15.5, 18.6 

Ink WB, Nano 

Substrate Label, CNB, PET 

The analysis was conducted for all factors in both trials. The 
response in each case was electrical resistance in both machine 
direction, MD (R1) and in cross-machine direction, CD (R2). 
ANOVA General Linear Model was applied, since several factors 
were studied. The p-value is an indication of a factor’s significant 
effect on a response. In this situation, a p-value less or equal to 
0.05 indicates a significant effect of the factor (with 95% 
confidence or better). 

Results - First trial 
The following is a discussion of the ANOVA results and plots 

obtained for the effect of calendering temperature, calendering 
pressure, anilox band volume, ink and substrate on resistance 
measured in MD. The analysis also examines the improvement in 
conductivity with calendering. 

The results of ANOVA in Appendix 1 show the significant 
effect of all the variables except ink. Figure 4 shows a great 
reduction in resistances when samples are calendered at high 
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pressures and temperatures when compared to those uncalendered. 
According to the p-value obtained from the effect of ink (0.224) 
and Figure 4, similar resistances were obtained with both WB and 
Nano inks. However, better drying was achieved with WB inks 
especially on PET, which can explain the high resistances on PET, 
when compared to both CNB and Label. This is clear in Figure 4, 
where traces printed on Label paper had the best conductivity of all 
the substrates. 
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Figure 4. Main Effects Plot for R1 from first trial. 
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Figure 5. Interaction effects plot for R1 from first trial. 

To further elucidate the dependences, a regression analysis 
was conducted for the above data to obtain the relation between 
resistance and the random variables: temperature, pressure, and 
band volume. To obtain a useful analytical tool, the discrete 
variables ink and substrate were mapped to numerical ones. In 
particular, for the inks, ‘Nano’ was mapped to 0 and ‘WB’ was 
mapped to 1. Likewise, for the substrates, ‘Label’ was mapped to 
0, ‘PET’ was mapped to 1 and ‘CNB’ was mapped to 2. This 
allowed us to regress on 5 main effects and up to 10 interactions. It 
turned out that, for the regression, the pressure main effect is not 
significant, but all the interactions are significant at better than a 
98.8% confidence limit. The following regression equation was 
obtained: 

R1 = 34.3 - 0.0532T – 1.35b + 18.8i + 6.24s - 0.000051TP + 

0.000510Pb - 0.00161iP - 0.000699Ps + 1.96is +0.00386Tb – 

0.852bi - 0.267bs - 0.00551Ts - 0.0279Ti (1) 

where R1 is the resistance measured in MD in Ohms 

 T is the calendering temperature in °F 
 P is the calendering nip pressure in pli 
 b is the cell volume per unit area in µm 
 s is the substrate number as describe above 
 i is the ink number 
The R2

adj for this regression is 83.0%. 
According to Equation 1, a lower resistance can be obtained 

with calendering at high temperatures and pressures and with 
lower band volumes (less ink), when compared to the resistivity of 
uncalendered samples at higher band volumes. Therefore, we can 
conclude that calendering provides higher ink mileage and hence a 
pronounced cost reduction of ink. This can be quantified by 
solving this equation for the calendered cell volume necessary to 
obtain the same resistance as an uncalendered print at a given cell 
volume, for any given ink. Likewise, other equivalent conditions 
can be solved for in order to optimize the process. 

Results - Second Trial 
The goal of this trial was to find the maximum calendering 

temperature that both paper substrates, Label and CNB board, can 
handle without any deterioration in their structure or sticking to the 
calendering roll. An additional drying unit was added before the 
calendering to simulate the sheet temperatures that would be 
experienced in commercial practice. Resistances at temperature 75 
and 176 °F were compared to that of the first trial. It was found 
that addition of the drying unit lowered sheet resistivity. However, 
the reduction in resistance was within a few Ohms when compared 
to the results obtained in the first trail, which may not compensate 
for energy cost to run additional drying units. 

Results of two-way ANOVA (Appendix 1) show a significant 
effect of temperature on resistance for Label and CNB in both MD 
and CD. Figures 6 to 9 show the effect of calendering temperature 
of the second trial on MD and CD resistances at different band 
volumes for Label and CNB. As the temperature increased from 
ambient conditions (around 75 °F), the resistance decreased by a 
great deal. Above 176 °F, the effect of temperature was reduced 
and the difference in resistances between 176 and 194 °F was 
within a few Ohms. Therefore, calendering at temperatures as high 
as 194 °F for both Label and CNB may not be economically 
beneficial, since more energy must be supplied to achieve these 
higher temperatures. 

 

Figure 6. Effect of Calendering Temperature on MD Resistance for Label. 
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Figure 7. Effect of Calendering Temperature on MD Resistance for CNB. 

ANOVA and Regression for the Second Trial 
WB traces were printed on Label at temperatures varying 

from 75 °F to 194 °F and pressures from 50 pli (uncalendered) to 
1500 pli. ANOVA analysis is summarized in Appendix 1. The 
analysis and main effect plot, Figure 8, show again the significant 
effect of calendering temperature on resistance of the printed 
traces. From the interaction plot between temperature and band and 
pressure and band, Figure 9, we can see that high temperature 
calendering reduces the resistance a great deal when compared to 
uncalendering for the same amount of ink. The statistical software 
would not compute the pressure-temperature interaction effect 
because of deficiencies of the data. As will be seen in regression 
analysis below, the effects of pressure-temperature interaction are 
significant 

As above, we can regress on three main effects and up to 3 
interactions to quantify the implications of the results of this trial. 
From the regression, it was found that the dependence on the 
pressure-band interaction was not significant. All of the other main 
effects and the pressure-temperature and temperature-band 
interactions are significant at better than a 99.9% confidence limit. 

The numerical relation between resistance and the random 
variables in this part of the trial (calendering temperature, pressure 
and band) is obtained by the regression equation: 

R1 = 39.9 - 0.0524T + .00122P – 1.63b - .000010TP + .00232Tb  +  

.000007Pb (2). 
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Figure 8. Main Effects Plot for R1: WB Silver Flake on Label, Trial 2. 
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Figure 9. Interaction Plot for R1: WB on Label. 

The R2
adj for this regression is 95.2%. The coefficient of the 

temperature is approximately the same as in Equation 1. The 
coefficient of the Tb is slightly more than half of that in Equation 
1, but the coefficient of the b term is slightly larger. The coefficient 
of the TP term is approximately 20% of that in Equation 1. The 
coefficient of P is positive, but the coefficient of TP is negative. 
This means that, for low temperatures, increasing the pressure 
slightly increases the resistance, but at higher temperatures, 
increasing pressure decreases the resistance. If we factor the P and 
TP terms, then the coefficient of .00111P is 1 - .00899T. Thus for 
temperatures above 111°F, increasing the calendering nip pressure 
improves the conductivity. The results that the coefficient of the 
TBand are reduced by slightly more than half, and that the 
effective coefficient of P is positive only above 111°F, are likely 
consequences of the additional drying on press (6 passes through 
press dryers and 4 passes past other hot air dryers). 

Conclusion 
Calendering temperature had a significant effect in reducing 

resistance of the traces for both WB silver flake and nanosilver 
inks printed on all three substrates; label paper, board and polymer 
film. The effect of calendering pressure on resistance was not 
significant for all WB printed traces, although for sufficiently high 
temperatures increasing pressure decreases resistance for all inks. 
A slight decreasing trend was found for the effect of pressure on 
resistance for nanosilver inks on label paper. However, none of 
these trends appears to be significant. For CNB the effect was not 
significant. However, calendering pressure on CNB was not as 
high as that applied to label paper or PET to avoid any 
deterioration in the board structure. Combination of calendering 
pressure and temperature and their interaction was found to reduce 
the resistance for WB and nanosilver inks printed on all substrates. 
Based on the above results, it can be concluded that calendering 
has the ability to improve conductivity of printed traces, which 
offers some cost savings during manufacturing.  

Increasing the volume of anilox cells reduced the resistance of 
the printed traces. The 18.6 µm anilox cell volume was found to be 
the best in terms of electrical performance. This was an expected 
result, since more conductive ink is deposited with higher volume 
of the anilox cells. A lot of scatter and variation was obtained 
when nanosilver ink was printed on PET. This could be due to the 
insufficient ink drying on the film. Calendering increased the 
conductivity of traces sufficiently that printing with a lower cell 
volume anilox can reach the conductivity of uncalendered traces 
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printed with a higher cell volume anilox. Regression equations 
were obtained that can be solved to estimate the reduction in cell 
volume obtained with calendering. 

The results of the second trail were consistent with that 
obtained in the first trail. However, calendering temperature should 
not exceed a certain value unless a non-stick coating is applied to 
the roll in order to avoid any sticking of the ink on the calendering 
roll or damaging of the substrate. In addition, ink film resistances 
tend to reach a stable resistance value and any additional increase 
in calendering temperature or pressure would be not efficient. 
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Appendix 1 

ANOVA Analysis for Resistance Measurements 

First trial 
ANOVA for the Data Obtained on First Trial: 
General Linear Model: R1 versus T, P (pli), Band, Ink, 

Substrate 
Factor  Type  Levels Values 
T  random 5 75, 104, 140, 158, 176 
P (pli)random 4 50, 500, 950, 1500 
Band  random 3 12.4, 15.5, 18.6 
Ink fixed 2 Nano, WB 
Substratefixed 3 CNB, Label, PET 
Analysis of Variance for R1, using Adjusted SS for Tests 
Source DF Seq SS Adj SS  Adj MS F P 
T 4 3926.00 2090.54 522.63 4.44 0.056 x 
P (pli) 3 3699.63 2705.14 901.71 .74 0.012 x 
Band 2 14226.30 9639.25 4819.63 6.91 0.074 x 
Ink 1 2779.03 1446.04 1446.04 2.36 0.224 x 
Substrate  2 3745.91 3490.15 1745.08 20.59 0.008 x 
T*Band  8 491.40 218.66 27.33 6.15 0.000 
T*Ink  4 751.96 389.57 97.39 21.91 0.000 

P (pli)*Band  6 433.73 359.38 59.90 13.47 0.000 
P (pli)*Ink 3 227.76 186.90 62.30 14.01 0.000 
Band*Ink 2 1588.93 1456.18 728.09 163.79 0.000 
Band*Substrate 4 377.48 375.90 93.97 21.14 0.000 
Ink*Substrate 2  625.78 625.78 312.89 70.39 0.000 
Error 1107 4920.80 4920.80 4.45 
Total  1148 37794.70 
x Not an exact F-test. 
S = 2.10836 R-Sq = 86.98% R-Sq(adj) = 86.50 

Second trial 
ANOVA for the Second Trial: 
General Linear Model: R (MD) versus T, P (pli), Band  
Factor Type Levels Values 
P (pli)random 3 50, 500, 1500 
T  random  4  75, 140, 176, 194 
Band random 3 12.4, 15.5, 18.6 
Analysis of Variance for R (MD), using Adjusted SS for Tests 
Source  DF Seq SS Adj SS Adj MS F P 
P (pli) 2 11.59 12.89 6.44 9.74 0.029 x 
T  3 280.01 280.01 93.34 29.47 0.001 x 
Band  2 1924.26 740.68 370.34 192.24 0.000 x 
P (pli)*Band   4 1.06  2.65 0.66 1.11 0.354 x 
T*Band  6  19.00 19.00  3.17  5.31 0.000 x 
Error 147 87.66 87.66  0.60 
Total 164 2323.57 
x Not an exact F-test. 
S = 0.772206 R-Sq = 96.23% R-Sq(adj) = 95.79 
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