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Abstract 
In recent years, there has been considerable interest in color 

stability of printed output from a marking engine.   In general, 

colors can vary within a page, page-to-page, job-to-job, and 

engine-to-engine.  Diagnosing the nature and sources of the color 

variability can help lead to approaches to reduce variability, such 

as improved subsystem components and improved process 

controls. In this paper, we discuss a methodology to diagnose the 

root causes of color variability. 

   

Introduction  
Color stability is a major requirement in the printing industry 

[1].  Variability of color within a page, between pages within a job, 

and between jobs within a marking engine is an important  print 

quality metric.   In many cases, color  can change over time, due to 

changes in operating conditions, such environment, customer area 

coverage, paper type etc. or as printer components age.  It is of 

considerable interest to understand the sources of color variability 

in a printer.   

In color xerographic printing, an image undergoes several 

transformations, from an electrostatic latent image, to a toner mass 

image, to a fused  image.   Temporal variations to the image can be 

introduced at each of these stages.  Typical types of variation can 

include drift, structured noises such as banding or streaks as well 

as unstructured noise.  In many xerographic systems, closed loop 

controls are used to mitigate color stability [2].  Sensors are used to 

monitor toner density on a photoconductor or intermediate belt and 

electrostatic voltages or laser power is adjusted to regulate them.   

The process controls are typically designed to mitigate slow shifts 

in toner density that happen over time scales of tens to hundreds of 

prints.  However, structured and unstructured noises, variations in 

processes downstream of the sensors such as in transfer and fusing, 

as well as rapid transients such as due to a sudden toner dispense 

event during low area coverage printing, can cause significant 

color shifts even in the presence of process controls.  

In this paper, we discuss methodologies to diagnose color 

variation  in printers.  Voltage, mass, and color sensors are used to 

capture the intermediate as well as the final image states.  We 

describe the use of time series analyses to obtain correlations 

among these states.  We discuss the use of such analyses to help 

identify sources of color variability, and to suggest potential 

approaches to minimize them.  
  

Methodology 
Figure 1 shows a schematic of a xerographic color printer 

instrumented with sensors to capture intermediate and final image 

states.  For example, electrostatic voltmeters (ESV) on 

photoconductor drums can be used to capture the latent image, 

toner density sensors on the intermediate belt to capture the 

developed toner image and color sensors to measure the color of 

fused prints.  In general, the more the intermediate image states 

that can be captured reliably, the more the information that can be 

gleaned from the correlation analyses.  Since most sensors tend to 

be point sensors, the signal to noise of the analyses can be 

improved by collocation of the sensors in the cross process 

direction. 
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Figure 1: Schematic of a color printer instrumented with

ensors to capture intermediate image states 

Figure 1: Schematic of a color printer instrumented with

ensors to capture intermediate image states 
A typical experiment involves  running several  uniform 
halftone density prints of a particular color (C, M, Y or K) and 
logging the sensor data.  Let yi(x) represent the measured image 
state i  at location x in the process direction.  If there are Q patches 
in every page and there are P pages in the print run, then x takes 
values from 1 to N, where N=PQ is the total number of patches in 
the print run.  Note that yi may be thought of as time series 
representations of the image states. 

The autocorrelation functions (A) and cross-correlation (C) 
functions can be written as [3] 
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where ∆p is called the lag, and y  and σ is the mean and standard 

deviation of y, respectively.  The autocorrelation function refers to 

correlation of a time series with its own past and future values and 

is especially useful in detecting periodic structures in the data. The 

cross-correlation refers to correlations between two time shifted 

time series and is useful to understand transient or delayed 

response to a common stimulus that impacts both time series. 

Cross-correlations are also useful to understand relationships 

between present values at sensor locations (yi(p)) and future values 

at output locations (yj(p+∆p)), which can be used to design process 
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controls.   Note that detrending is sometimes needed as a 

preprocessing step to prepare the time series for analysis.  

Correlation analyses assume linearity since the correlation 

coefficients measure the strength of linear association between the 

time series.  Linearity is often a good assumption for variations 

that are sufficiently small.  It is however applicable in the present 

context, since we are concerned with small variations about the 

mean in the image states, and how these variations propagate 

through the printing system.  Let ˆiy  and ˆ
jy be two normalized 

time series representing the image states at sensor locations i and j, 

where ˆ ( ) /y y y σ= −  has zero mean and unit variance.   Using 

linear system theory we can write 

 

 2ˆ ˆ ˆ1j i ijy y nα α= + −           (2) 

where is α the Pearson correlation coefficient = ˆ ˆ
j iy y�  which 

signifies the fraction of variance in image state j due to variance in 

image state i.  The second term in Eq. (2) signifies the component 

in ˆ
jy that is uncorrelated with ˆ

iy .  This can be interpreted as the 

noise ( ˆ
ijn ) added by processes and subsystems between image 

states i and j, where 2ˆ ˆ ˆ( ) / 1ij j in y yα α= − − . 

Results and Discussion 
We now present some applications of the methodology 

discussed previously.   Figure 2 shows a portion of the time series 

data of Esv, Etac (toner density sensor measuring specular 

reflectance) and lStar (measured offline using a 

spectrophotometer) for 50% Cyan halftone.    For this print run, the 

number of patches per page, Q, is 10 and the number of pages, P, is 

100.  Note that the time series data has been normalized.  For the 

Etac data, the clean belt signature needs to be removed for 

consistent results.  We observe that some of the structure in lStar 

data is observed in the Etac data and Esv data.   Note that the Esv 

data is negatively correlated to Etac and lStar (higher or less 

negative Esv, leads to higher toner mass or lower Etac and darker 

color or lower lStar).  Figure 3 shows scatter plots of Esv versus 

Etac and Etac versus lStar.  Scatter plots are useful to test 

assumptions of linearity.  We note that Etac and lStar are well 

correlated (less scattered) when compared to Esv and Etac data. 

Next we consider the autocorrelation of image states.  Figure 

4 shows the autocorrelations of lStar, Etac and Esv.  We observe 

autocorrelation peaks at lags that are multiples of 5.  This is 

consistent with a periodic defect such as banding.  In this case, 

since the peaks show up in all three image states, we can surmise 

that it is be related to the imaging drum, and the lag of 5 is 

consistent with photoreceptor banding. Some aliasing is observed 

due to the low sampling rate used in the analysis. The values of the 

autocorrelation function at the peaks, can be used to quantify the 

contribution of particular sources to the overall variation. For 

instance, if R1 is the autocorrelation at side lobe ∆p1, then R1 is the 

fractional contribution of the source at ∆p1 to the overall variance.  

  Figure 5 shows the cross correlations between lStar and Etac 

and Etac and Esv.   The side lobes (peaks) observed at non zero 

lags is due to photoreceptor banding. The square of the cross 

correlations at zero lag, Cij(0), signifies the fraction of variance in j 

explained by variance in i.  Thus the fraction of variance in lStar 

due toner mass variance on the intermediate belt is CEtac-lStar(0)2 

while the remainder (1- CEtac-lStar(0)2 )  signifies the fraction of 

variance in lStar due to transfer and fusing processes.  Similarly, 

the fraction of variance in toner mass on the intermediate belt due 

to voltage variations in the latent image is CEsv-Etac(0)2, while the 
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remainder (1- CEsv-Etac(0)2) signifies the fractional contributions 

due to develop and first transfer/retransfer processes.  Thus the 

cross correlations between image states can help to develop a 

pareto chart of the main drivers of the overall color stability.  This 

procedure can be repeated under various system noises such as 

environment, component age and customer usage to understand the 

sensitivity of the main drivers to noises.   

As an example of how correlation analyses can be used to 

understand sensitivity to noises, let us consider the impact of toner 

dispense rate on color stability.  Print targets were generated that 

varied the cyan area coverage of the document outside the sensor 

locations, while the area coverage in the sensor location was 

maintained at 50% AC. This allows us to evaluate the color 

stability of 50% Cyan as a function of dispense rate.  Figure 6 

shows toner dispense rate for three print runs: low AC, nominal 

AC and high AC.  The correlation analyses described previously 

was repeated for all three print runs.  Figure 7 shows a pareto chart 

of the contributors to variance in lStar as a function of dispense 

rate. We observe that the overall variance in lStar increases for a 

high dispense rate. However, the fractional contribution from  

various subsystems stays about the same: ≈25% for Charge, 

Expose and PIDC; ≈50% for Develop, 1st Transfer and Retransfer; 

and ≈25% for 2nd Transfer and Fusing.  A finer partitioned  pareto 

chart detailing contributions from each component or subsystem is 

possible if  additional intermediate image states are captured.   

Conclusions 
This paper discussed methodologies based on correlation 

analyses to help diagnose color stability in printing systems.  

Examples were presented to illustrate the application of the 

methodologies to help identify drivers  of color variation in the 

xerographic process.  Knowledge of the drivers and their relative 

importance can help suggest approaches to decrease color 

variation, such as through improving subsystem performance or 

improving process controls. 
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