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Abstract 
Laser printers with multiple laser diodes in a single diode 

package may have diode to diode spacing requirements critical to 

print quality.  Standard off-the-shelf equipment is seldom designed 

to measure to the nanometer resolutions and linearity desired, 

especially if the measurements are time constrained.  Therefore 

characterizing the linearity of the measurement system is 

important to the understanding of the measurement system 

limitations. 

Diode to diode spacing is a comparison of the centroids of 

multiple adjacent laser spots in one or more axes.  It is physically 

possible to measure the centroid location of the spots using 

various methods including scanning aperture, CCD/CMOS 

cameras or position sensing devices.  The accuracies and 

precisions desired for good measurements as well as for good 

manufacturing process capabilities are often smaller than what 

are easily available with these products, often by an order of 

magnitude.   

A procedure has been developed to estimate the measurement 

system error over a wide range of scales. It can be applied to 

several of the common laser spot centroid measurement devices 

enabling estimation of measurement resolution of the relative 

centroid.  This method is based on an innovative technique 

involving controllable movement on a much larger scale. 

Introduction 
 In development and manufacturing of laser printheads it is 

useful to be able to measure laser spot centroids both very 

accurately to insure correct placement, and very precisely to insure 

minimal time spent in the measurement.  The term centroid will be 

used here to describe the intensity weighted center of a laser spot.  

One such situation is the measurement of diode to diode spacing, a 

relative measurement of the distance between the centroids of two 

laser spots. 

 The centroid equation below is the same form as the center of 

gravity equation for one axis. 
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 In this case the data is quantized by pixel so the equation is 

based on a summation.  The delta function of the general form is 

replaced by “I” indicating the intensity at each location.   
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 As a relative measurement, several types of errors tend to 

cancel themselves out.  Errors associated with bow, skew and other 

optics problems tend to have similar values for spots spatially 

close because the optics are similar locally, and similar for 

temporally close spots because thermal and timing issues are 

similar.  Relative errors associated with spot shape and spot power 

issues also tend to cancel themselves out.  Less fortunately, higher 

accuracies and precisions, not normally required in other 

measurements, may be desired and or required in diode spacing 

measurements due to the eye’s sensitivity to print defects like 

banding.  In addition, requirements for ease-of-use of the test 

equipment and test time constraints in manufacturing can 

compound the problem. 

 Traditionally measuring the accuracy of a measurement 

system requires a more accurate reference.  The accuracy of the 

daughter system can be known to no more than that of the parent 

system minus the additional uncertainty from the measurement.  

Problems abound when trying to confirm the capability of a high 

accuracy and precision measurement system when no appropriately 

accurate and precise reference is available.  When confronted with 

the task of confirming measurement ability to much higher than 

normal requirements, one measurement system may not be able to 

measure everything desired. It can also be beneficial to 

characterize the ability using multiple method types.  

Characterization using different types of methods provides a 

greater assurance of the system’s capabilities.   Different methods 

cancel or enhance different error sources, allowing for analysis of 

non-linear sources.  In this way multiple measurement methods not 

only confirm the result, but provide insight when the result is not 

optimum.  

Measuring Centroids 
 It can be useful to measure the centroid for each of two laser 

spots which may be 10’s or 100’s of microns apart along an 

arbitrarily chosen axis, and at the same time measure each single 

centroid location to 100’s of nanometers or microns, two orders of 

magnitude tighter.  Confirming the accuracy would then 

traditionally require the use of a gauge with accuracy in 10s or 

hundreds of nanometers over a several hundred micron range.  

Reliable measurements at this scale are expensive, difficult at best 
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and often less trustworthy, making a second type of confirmation 

valuable.  

 There are several types of measurement techniques available 

to measure laser spot centroids based on projecting the laser spot 

onto a single or array of optical sensors. Rotating slit devices use 

an inferred slit location over a single sensor.  Isotropic position 

sensitive devices use the proportion of electrons traveling to 

different edges of the device to estimate location. CCD and CMOS 

arrays are discrete position sensitive devices that identify the 

centroid from the number of photons at each discrete pixel location 

for an image.  These methods have similar resolution problems.  

CCD or CMOS arrays are used in this example. 

Experimental Method 
 A series of laser spots are placed in a straight line during a 

single scan across a camera.  If the image generation and image 

capture systems have perfect linearity then the centroid to centroid 

offset, in the scan and cross scan axes, should be equal between 

each pair of adjacent spots whether the spots are parallel to the 

pixel array or not.  If the image generation does not produce 

equally spaced spots, then the offset between various spots will not 

be equal, however the non-equal distance should be repeatable. 

This method does not require the image generation to produce 

equally spaced spots; it does depend on the mean relative spacing 

being constant for each pair of adjacent spots. 

 Repeating this process after moving the printhead microns or 

millimeters will produce another set of spot positions.  In this case 

the image generation system has not realized any parameter 

changes and should be producing the same pattern, just in a 

different location on the image sensor.  If the image capture system 

has perfect linearity then the offsets for each adjacent pair of spots 

should be the same.  This can be repeated multiple times to 

estimate the changes in local linearity in various parts of the 

sensor, producing a linearity map of the measurement device.  If 

the function is well behaved, it can then be used to compensate for 

future actual measurements.  

 A coarse movement to another location on the pixel array has 

an additional benefit.  It allows data to be gathered at a fraction of 

a pixel offset because the movement is not expected to be accurate 

to a few nanometers. If this is repeated several times at several 

locations then errors due to sub-pixel non-linearity should be 

captured as part of the error in this measurement routine.  

Referring to figure 1, a movement from position A to position B 

may not capture any sub-pixel non-linearity error.  Large 

movements, because they are not highly accurate will include a 

number of locations with respect to the pixel streets such as 

positions A, C and D causing sub-pixel non-linearity errors to be 

included in the measurements.  

 

 

 
 

 

Figure 1 Spot location with respect to the pixel array  

More Accurate Reference  
 A different type of method, and a more traditional one, is to 
use a more accurate reference.  In this example a stage is driven by 
a piezoelectric stack using a strain gauge for closed loop location 
feedback.  The laser is focused on the camera pixel array which is 
located on the stage.  The stage is moved a distance, after a 
suitable time delay for stability, multiple spots are measured.  The 
stage is then moved to the next location.  Again small distances are 
being measured which make it difficult to get noise free data.  A 
low pass filter such as a Butterworth filter is used on the raw data.  
The remaining data is then averaged for each requested stage 
location.    

Results 
 The graph below shows the offsets obtained from each pair of 

adjacent spots as the printhead was moved from location to 

location on the image array.  Data point 1 on the X axis of this 

graph is the difference in position between the first and second 

spots in the series.  This data shows linearity error of +/- 2.7 um 

with a 99% confidence interval across a measurement span of 100s 

of microns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Relative changes in cross scan axis location for multiple locations on 

pixel array 

 Quantum efficiency, the efficiency of converting photons to 

electrons is not identical from one area of a pixel array to another.  

[1] This variation is due to the silicon array itself as well as the 

micro lens arrays used on most arrays with less than a 9 micron 

pixel pitch.   

 Figure 3 shows the non-linearity measurements obtained with 

a piezoelectric stack stage and strain gauge feedback.  This is a 

higher accuracy reference, but this particular set of equipment is 

limited by only being able to traverse several camera pixels instead 

of several millimeters.  In this case measurements were taken at a 

one tenth of a pixel interval in order to capture within pixel non-

linearities.  It provides an estimate of the non-linearity over this 

several pixel scale. Simply graphing the filtered and averaged data 

produces this graph. 
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Figure 3 Non-linearity over several pixels 

 Normalizing this data over a several pixel span to a linear fit 

helps remove the variation due to larger scales and bring out the 

variation on a sub-pixel level. This particular data has a strong 

second order trend which has also been normalized for figure 4. 

This data exhibits a strong repeating pattern on the same scale as 

the pixel pitch suggesting that this component of the non-linearity 

is due to within pixel causes, in this case +/- 3% of the pixel pitch, 

a small component of the non-linearity seen in figure 2. 

   

 

 

 

 

 

 

 
Figure 4 Non-linearity due to within pixel sources 

Sources of Error 
 There are several possible sources of error in measuring diode 

to diode spacing.  Larger scale errors from movement over 100s of 

microns or millimeters include quantum efficiency and optical 

contamination. Quantum efficiency of the charge generation areas 

varies spatially within a sensor array.  A simple demonstration of 

this effect is made by moving a continuous wave laser spot across 

a single sensor PIN diode and noticing the changes in output with 

respect to location.  Optical contamination is often dust, oils and 

other contaminants that settle on the optics from the air.  This 

contamination is always a problem and concern.  

 Due to the excellent accuracy of photolithography, camera 

pixel pitch (center to center pixel spacing) is very uniform within a 

single array.  This accuracy is dependant upon mask accuracy, 

mask magnification, the photoresist used, etc.  Information from 

one manufacturer suggests that pixel pitch error is generally within 

2 parts per million of the stated pitch.  Common pixel pitches are 

in the single digit micron range with some to 25 microns or more. 

A 2 part per million pixel pitch error over 100 um is a 0.2 nm 

error, which is not normally a significant issue.  

Smaller scale errors include sub-pixel errors which 

accumulate with the other errors mentioned previously.  If 

measurements occurred in integer multiples of the camera pixel 

pitch, the issue would be much simpler.  Because centroid 

measurements are not made in neat multiples of the pixel pitch, the 

localized linearity of the measurement system over sub-pixel 

distances should be estimated such as presented here. 

 

Other Concerns 
 Although smaller pixel pitches provide greater resolution 

without lenses, smaller pixel sizes are naturally less efficient due to 

the areas required for non-light sensitive functions such as charge 

collection, charge transfer and charge measurement. [1] This 

quantum efficiency is improved with the addition of micro lens 

arrays, but these lens systems are very sensitive to the incidence 

angle. 

 Pixel mapping calibration linearizes each individual pixel in 

an array to a common reference.  Although not convenient, this 

does offer improved measurement accuracy.  One alternative is to 

produce an intensity calibration for each pixel in the array, thereby 

normalizing the non-uniform quantum efficiency and optical 

contamination effects, although this introduces its own difficulties. 

 

Summary 
 Measuring a series of laser spot centroids with a CCD/CMOS 

camera by moving either the camera or the stage macroscopically 

between measurements provides insight into measurement 

equipment linearity.  Sub-pixel non-linearities are clearly present 

and measureable.  Non-linearities on a pixel basis can be mapped 

and therefore corrected for, even though accurate characterization 

of these is beyond the specification of the CCD/CMOS camera.   
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