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Abstract 
The surface heating fuser, required in the EP printer from 

the energy saving standpoint, sometimes causes the horizontal 
banding image. This type of banding is not seen with 
conventional fuser such as the heat roller type. We found that the 
root cause of this phenomenon is the AC current leakage from 
fuser to transfer area. This paper reports that the RC circuit 
model between fuser and transfer area can simulate this 
phenomenon well. According to this model, solutions are as 
follows; 

1. To increase the reactance of fuser heater and film, 
preventing the AC current leakage to the media. 

2. To add the by-pass circuit from fuser film inside to the 
ground, preventing the AC current leakage to the media. 

3. To add the by-pass circuit from pressure roller to the 
ground, preventing the AC current leakage to the media. 

 

Introduction 
SURF system has built a firm reputation as energy-saving 

fusing technology. However, the SURF system might cause a 
horizontal banding image, because the SURF system has a fusing 
heater that is close to the fusing nip, and the AC current leakage 
is easily transmitted to the fusing nip and to a transfer part 
through the media, and oscillates transfer voltage. On the other 
hand, the conventional fuser such as the heat roller type has a 
halogen lamp that is far from the fusing nip. Therefore, this kind 
of banding does not occur. This paper reports that the RC circuit 
model between fuser and transfer area can simulate this 
phenomenon well. 

The Mechanism of Banding  
Fig.1 shows the cross sectional image between fuser and 

transfer area. Here, we explain the case of SURF system. The 
AC voltage inputted from the AC power supply is transmitted to 
the media through the heater substrate and the fusing film (Ⅰof 
Fig.1). Moreover, AC voltage is transmitted from the fusing nip 
to the transfer nip through the media, in the condition that 
resistance of the media is remarkably lowered by high 
temperature and high humidity (Ⅱof Fig1). Consequently, AC 
voltage is overlapped with DC voltage of transfer, and transfer 
voltage is oscillated (Fig.2). This oscillation of transfer voltage 
turns into the change of transfer efficiency, and causes a 
difference of density (banding) on the image. A portion of dark 
density is caused by high transfer voltage, and a portion of light 
density is caused by low transfer voltage. 
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Figure1. Cross sectional image between fuser and transfer 

 
Figure2. Transfer voltage overlapped with AC voltage 

Fig.3 shows the image of the banding. d1 is the distance 
from transfer area to fuser. Before a leading edge of media 
reaches fusing nip, banding does not occur. d2 of the dark and 
light density on the image shows the cycle of the banding. d2 is 
calculated according to the following equation: 

d2 = vp/f 

where vp is the transportation speed of media. f is the 

frequency of the AC input voltage. For example, in the case of 

50Hz, 100 mm/sec, d2 becomes 2.0mm. 
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Figure3. Banding image on media. 

RC model between fuser and transfer  
We assume that the banding is related to oscillation of 

transfer voltage, and the banding level is proportional to the size 
of AC amplitude in transfer nip. Fig.4 shows the RC circuit 
between fuser and transfer area. By using this circuit model, we 
can predict the banding level. We will describe how to calculate 
the Resistance(R) and Capacity(C). 
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Figure4. RC circuit model between fuser and transfer 

1. Heater (C1) 
Fig.5 shows the image of the fusing nip. Heater consists of 

three layers that are substrate of insulation, pasted heating 
element on a substrate, and the cover layer on the pasted heating 
element.  Capacity C1 is calculated according to the following 
equation: 

C1 =ε1 S / d3 

where ε1 is the dielectric constant of the substrate. S is the 
area of the heating element. d3 is the thickness of the substrate. 
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Figure5. Image of the fusing nip 

2. Fusing film(C2) 
Fusing film consists of two layers that are the base layer 

such as PI or SUS, and the top layer such as PFA or Rubber. 
Capacity C2 is calculated according to the following equation: 

 
C2 = C2a×C2b / (C2a+C2b) 
 
Where: C2a is base layer's capacity. C2b is the top layer's 

capacity. 
 
In the case that the insulating film such as PI is used as the 

base layer, capacity C2a is calculated according to the following 
equation: 

 
C2a  =ε2 S / d4 
 
where ε2 is the dielectric constant of the base layer. S is the 

contact area of the film and the heating element.d4 is the 
thickness of the base layer. 

In the case that the conductive film such as SUS is used, it 
is possible to disregard it on the circuit.  In the case that 
resistive film such as PI added filler, it may be approximated as a 
resistance object, or it may be approximated by RC parallel 
model. 

On the other hand, in the case that the insulating PFA or 
rubber is used as the top layer, capacity C2b is calculated 
according to the following equation: 

C2b = ε3 S / d5 

where ε3 is the dielectric constant of the top layer. S is the 
contact area of the film and the heating element.d5 is the 
thickness of the top layer. 

In the case that the top layer is resistive, it may be 
approximated by RC parallel model as mentioned above. In the 
case that the top layer is conductive, it is possible to disregard it 
on the circuit.  

3. Resistance of media from fuser to transfer (R3) 
R3 is the resistance of media from fuser to transfer, so that it 

is proportional to the distance d1. R3 is calculated according to 
the following equation: 
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 R3 = σ d1 

where σ is the resistance of media for each unit length.d1 is 
the distance from fuser to transfer. 

 
In high temperature and high humidity where the banding 

might be occurred, the resistance (σ) was measured as 
1(MΩ/mm). For example, in the case of 60mm (d1), R3 becomes 
60MΩ. 

 
4. The transfer roller (R4)  

Resistance R4 of transfer roller is measured by applying 
voltage between shaft and electrode roller which is contacted to 
transfer roller surface.  

 
5. Resistance between fusing film and ground film (R5) 

R5 is resistance between fusing film and ground.  If the 
inside of the fusing film is not grounded, R5 is disregarded on 
the circuit. If the capacitor is connected with R5 in series or in 
parallel, corresponding circuit should be created accordingly. 

 
6. Resistance and Capacity between Pressure roller and ground 
(R6,C6)   

R6 is resistance between Pressure roller and ground. C6 is 
capacity between Pressure roller and ground. If the Pressure 
Roller is not grounded, R6 and C6 are disregarded on the circuit. 
If the capacity is connected in parallel like the provisional 
publication of a JP2006-195003, corresponding circuit should be 
created accordingly. 

In this model, these calculated capacities C are converted 
into reactance Xc according to the following equation: 

 

Xc = 1 / (2πfC)  

 
where π is the circular constant. f is frequency of the AC 

input voltage. C is calculated capacity as mentioned above.  
 

And we calculate the AC amplitude (in percentage) in 
transfer nip, when the input AC amplitude was assumed to be 
100%. As mentioned above, banding level can be predicted by 
this percentage, and be called  AC transmission rate. 

Correlation between AC transmission rate 
and banding level 

Table.1 shows a correlation between AC transmission rate 
calculated from the RC circuit, and banding level of eleven 
printers (A～K) under development. The realistic range of heater 
reactance Xc1, film reactance Xc2, and media resistance R3 are 
200MΩ or less. The print conditions are as follows. able.1 shows 
that AC transmission rate correlates with the banding level, and 
if the AC transmission rate is less than 30%, the banding does 
not observed.    

[ The print conditions ] 
Print environment: 30℃/80％ RH 
Media：STEINBEIS RECYCLING COPY 80g/m2  
(acclimated for 48 hours, σ = 1.0MΩ/mm ) 
Print pattern: Solid Black 
Print mode: Plain paper mode (Full Speed)  
Input voltages: AC200V (f = 50Hz) 
Voltage of transfer : 700V 
 

Correlation between AC transmission rate 
and reactance Xc 

We changed the heater reactance Xc1, film reactance Xc2, and 
media resistance R3 in printer K (which showed the worst result). 
Fig.6 shows that AC transmission rate is inversely proportional 
to heater reactance Xc1, film reactance Xc2, and media 
resistance R3. If the heater reactance Xc1 and film reactance Xc2 
become large, then less AC current is transmitted to the fusing 
nip. As a result, the AC amplitude in transfer nip becomes low. 
And if the media resistance R3 becomes large, then less AC 
current is transmitted from fuser nip to transfer nip. As a result, 
the AC amplitude in transfer nip becomes low.  

 

 

Table.1 Correlation between AC transmission rate and banding level 
A B C D E F G H I J K

Heater Reactance (Xc1) Xc1=1/(2πｆC1) 45 MΩ 33 MΩ 7 MΩ 10 MΩ 6 MΩ 30 MΩ 5 MΩ 6 MΩ 6 MΩ 4 MΩ 6 MΩ

Film Reactance (Xc2) Xc2=1/(2πｆC2)
56 MΩ

SUS
Rubber

25 MΩ
SUS

Rubber

under 1MΩ
PI

added filler

under 1MΩ
PI

added filler

under 1MΩ
PI

added filler

34 MΩ
SUS

Rubber

under 1MΩ
PI

added filler

17 MΩ
PI

59 MΩ
SUS

Rubber

33 MΩ
SUS

Rubber

64 MΩ
PI

Rubber

Media Resistance (R3) R3 = σ d1 54 MΩ 54 MΩ 128 MΩ 115 MΩ 55 MΩ 184 MΩ 60 MΩ 55 MΩ 107 MΩ 108 MΩ 84 MΩ

Reactance between
Pressure roller and Ground
(Xc6)

Xc6={(2πｆC6)2+R62}1/2 400 MΩ 400 MΩ 1 MΩ 1 MΩ 3 MΩ 200 MΩ 3 MΩ 16 MΩ 200 MΩ 400 MΩ 400 MΩ

Resistance between Film and
Ground (R5)

R5 2 MΩ 2 MΩ ─ ─ ─ ─ ─ ─ 200 MΩ 400 MΩ 400 MΩ

3% 5% 14% 17% 28% 33% 33% 38% 64% 72% 73%

not
observed

not
observed

not
observed

not
observed

not
observed

observed observed observed observed observed observed

AC transmission rate (%)

Banding
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In other words, amount of AC current leakage from AC power 
supply to transfer nip is inversely proportional to the size of 
electrical impedance which is connected with the circuit from AC 
power supply to transfer nip in series.  

In this case of Printer K, if we change these parameters Xc1, 
Xc2, R3 in realistic range of less than 200MΩ , the AC 
transmission rate did not reach below than 30%. In such a case, 
we should change Xc1, Xc2, R3 at the same time. Otherwise, we 
should change the resistance R5 or the reactance Xc6, as follows. 
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Figure6. The correlation between the AC transmission rate and reactance 
Xc1,  Xc2 and resistance R3 

We changed the resistance R5 on the by-pass circuit from 
fusing film inside to the ground, and reactance Xc6 on the 
by-pass circuit from Pressure roller to the ground, in printer K 
(which showed the worst result). Fig.7 shows that AC 
transmission rate is proportional to the resistance R5 and 
reactance Xc6. If the ground resistance R5 in fusing film 
becomes low, the AC current transmits to the ground through the 
resistance R5, then less AC current is transmitted from fusing nip 
to transfer nip. As a result, the AC amplitude in transfer nip 
becomes invisible level. And if ground reactance Xc6 in Pressure 
Roller becomes low, the AC current transmits to the ground 
through the reactance Xc6, then less AC current is transmitted to 
the transfer nip. As a result, the AC amplitude in transfer nip 
becomes invisible level.  

In other words, amount of AC current leakage from AC power 
supply to transfer nip is proportional to the size of electrical 
impedance which is connected with the circuit from AC power 
supply to transfer nip in parallel. 

 In this case of Printer K, if we change the resistance R5 from 
400MΩ to less than 5MΩ, the AC transmission rate reach 
below than 30%.  Otherwise if we change the resistance Xc6 
from 400MΩ to less than 30MΩ, the AC transmission rate 
reach below than 30%.  

As mentioned above, we can simulate the correlation between 
AC transmission rate and reactance Xc. Therefore, we can select 
the effective parameters to control the AC transmission rate to be 
less than 30%, in which banding is not observed. 
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Figure7. The correlation between the AC transmission rate and resistance 
R5 and reactance Xc6 

Solution for banding  
According to this model, solutions are as follows; 
 
1. To increase the reactance of fuser heater and film, 

preventing the AC current leakage to the media. 
 

2. To add the by-pass circuit from fusing film inside to the 
ground, preventing the AC current leakage to the media. 

 
3. To add the by-pass circuit from Pressure Roller to the 

ground, preventing the AC current leakage to the media. 
 
Conclusion  
In SURF system, there is a possibility of horizontal banding 

image to occur, because SURF system has a fusing heater that is 
close to the fusing nip, and the AC current leakage is easily 
transmitted to the fusing nip and to a transfer area through the 
media, and oscillates transfer voltage. In this paper, we have 
simulated this banding by the RC circuit model between fuser 
and transfer area. The conclusions can be summarized as follows. 
 
1. By the RC circuit model, we have simulated the banding level 
by the percentage of the AC transmission rate in transfer nip. 
 
2. This percentage correlates to the banding level, and it's 
desirable to suppress this percentage within the 30% to prevent 
the banding to occur.  
 
3. By the RC circuit model, we have found out the effective 
parameters and solutions for banding.  
 
As mentioned above, banding can be controlled by designing a 

SURF system so that those solutions can be fulfilled. 
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