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Abstract 
Security printing jobs incorporate variable data into explicit 

regions, called deterrents, which can be read later, usually by a 
visible spectrum imager (e.g. scanner or camera). In order to 
initiate a security printing job, a number of authorization steps 
must be performed. These include the press operator entering the 
username, password and, possibly, biometric information. Other 
identification information includes the press identifier (serial 
number, MAC address, etc.), timestamp, job identification number, 
lot number (if appropriate), SKU, manufacturer ID, etc. All of 
these physical security data can be used to drive aspects of the 
variable data printing (VDP) associated with the security VDP 
job. This physical security data is digested (trimmed to uniform 
lengths for each of the input fields, exceptions handled, etc.), 
concatenated into a single binary string, and digitally signed as 
necessary to produce the desired security and/or string length. 
This binary string now represents the physical security data. Next, 
the binary string is used to drive the security VDP data. This paper 
will elaborate on several approaches—scrambling, hashing, 
encryption, sequential XOR—used to convert physical security 
strings into hybridized security VDP data. The advantages of this 
on-ramp approach to preventing spoofing of security VDP jobs, 
and its advantages in brand protection and anti-counterfeiting, are 
then discussed. 

Security Variable Data Printing (SVDP) 
Variable data printing (VDP), usually through the use of 

digital printing technologies—provides the capability of making 
every printed item the carrier of explicitly unique information. An 
example of explicitly unique information is a set of mass serialized 
barcodes, with a different barcode on each printed item. This is 
different from the carrying of implicitly unique information, such 
as the generally forensically-friendly interaction of ink and 
substrate during printing—which can be read using specialized 
high-resolution imagers [1]. 

Security VDP (SVDP) therefore writes an explicit stream of 
variable data into defined regions, called deterrents [2]. Deterrents 
are organized to be read later, usually by a visible spectrum imager 
(e.g. scanner or camera). The effect of the printing and scanning 
can be modeled and the deterrents altered to anticipate this effect, 
an approach called pre-compensation [3]. In order to determine 
what data goes into these one or more deterrents, an input stream 
of binary information is required. This stream can be derived 
cryptographically, serially, or by other means, and serves as the 
input for the information in one of the security deterrents. 

Next, in order to initiate the overall security printing job, a 
number of authorization steps are performed. These steps can 
include the following: (1) the press operator entering the username, 
password and, possibly, biometric information; (2) the press 
identifier (serial number, MAC address, etc.); (3) a timestamp; (4) 

a job identification number; (5) a lot number (if appropriate); (6) 
SKU; and (7) manufacturer ID. 

All of these physical security data can be used to drive aspects 
of the variable data printing (VDP) associated with the security 
VDP job. The security printing ecosystem requires security VDP 
data for multiple roles. Variable 1D and 2D barcodes, preferably 
GS1 GTIN compliant, are used for point of sale and mobile 
commerce applications. Complex security features—such as copy-
evident deterrents, guilloches, microtext, void pantographs, and 
color barcodes—can be used for additional security purposes, such 
as mass serialization, authentication and forensics. In turn, these 
deterrents can be used for investigations, evidence gathering and 
subsequent prosecution. We now cover these concepts in more 
depth. 

GS1 SGTIN (Serialized Global Trade 
Identification Number) 

GS1 global traceability standards specify how data is encoded 
in RFID and barcodes to allow for automated supply chain 
workflows, including product recall [4]. Accordingly, prominent 
SVDP deterrents should carry Serialized Global Trade 
Identification Number (SGTIN) data. The GS1 SGTIN-96 standard 
consists of: 

 
(1) The header, which is 8 bits. 
(2) The filter, which is 3 bits, specifying if the tagged object 
is an item, case or pallet. 
(3) The partition, which is 3 bits, indicating how the 
remaining fields are partitioned, allowing their data to be 
recovered and interpreted correctly. 
(4) The company prefix, which is 20-40 bits (depending on 
the partition bit specification), containing the company's 
EAN.UCC Company Prefix. 
(5) The item reference, which is 4-24 bits (depending on the 
partition bit specification), containing the item's GTIN item 
reference number. 
(6) The serial number, which is 38 bits, and contains the 
item's unique serialized data, often designed for randomness 
in the mass (mass serialization). 

 
The URI (Uniform Resource Identifier) representation of such 

an SGTIN may be, for example, urn:epc:tag:sgtin-
96:3.0037000.06542.837201171, which decodes with the 
following meaning: the tag is an SGTIN-96 tag that has a Filter 
value of 3 (shipping unit), a Company Prefix of 0037000 (Proctor 
& Gamble), an Item Reference of 06542 (Bounty ® Paper Towels 
15 Pack) and a Serial Number of 837201171, which uniquely 
disambiguates that item from others of the same type. 

The SGTIN is described here as it is readily deployed in 
advanced security VDP workflows, as described in the next 
sections. 
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Guilloche and Color Tile SVDP Deterrents 
Two deterrents we will use in the examples below are shown 

in Figure 1. On the left is an example of the guilloche deterrent 
used, which consists of families of polar curves in cyan, yellow 
and magenta and encodes 64 bits of information along with a 
checkbit (max capacity 65 bits). These bits are encoded from the 
type of curve, the color, and the location. On the right is a color tile 
based deterrent [3], which uses 8 non-data carrying, color and 
orientation calibrating, tiles in the upper left and lower right 
corners (Figure 2) along with 56 data-carrying bits. The deterrent 
thus holds a maximum capacity of 144 bits of data, or more than 
twice that of the guilloche. 

 

   
Figure 1.Sample SVDP marks. The guilloche mark (left) contains up to 65 
bits of information and the tile deterrents mark (right) contains up to 145 bits 
of information. 

 
Figure 2. Color tile deterrent as described in the examples. Note that there 
are 8 non-payload indicia (tiles with no data carrying capacity) in the upper left 
{Black, Cyan, Yellow and Magenta, in reading order} and in the lower right 
{Green, Blue, Red and Black, in reading order} used for orientation and color 
calibration. 

Distributed SGTIN 
The simplest manner in which to incorporate security 

information is to distribute the security data among several SVDP 
marks. For the SGTIN, this may correspond to the use of the above 
two deterrents in coordination as described here (note, of course, 

that the color tile itself can carry the complete 96 bits in the 
SGTIN described above, along with 50% error-correcting code, if 
so desired): 

 
(1) A guilloche mark (Figure 1, left), which contains 64 bits 
and a check bit. The 8 bits in the header field are represented 
8 times through the use of a scrambling algorithm. The 
easiest possible scrambling technique can use a 3-bit signal 
to decide on which digit in the original 8 bits in the header 
field to begin a cycle. For example, if the 8 bit header is 
{11010001}, and the 3-bit signal is {011}, then the eight 
sequential cycles represented in the 64-bit guilloche are 
{10001110}, {00011101}, {00111010}, {01110100}, 
{11101000}, {11010001}, {10100011}, and {01000111}. 
(2) The 3-bit filter specifies which of 8 different scrambling 
approaches to use on the guilloche mark. In the above 
example, {011} indicates to start at the “3” index (where “0” 
is the first index), underlined here {11010001}. 
(3) The partition is also 3 bits, and may be stored in the 
carrier frequencies of the magenta, cyan and yellow channels 
(1 bit/color channel) of the color tile marks shown in Figure 
1 (right). This is tied to a copy-prevention effect. 
(4) The company prefix, which is in this example 28 bits, is 
encoded in some of the payload indicia (tiles) of the color 
tile mark in Figure 2. This color tile deterrent stores 
ln(6)/ln(2) = 2.585 bits/tile, so that in 56 tiles, it holds 144 
bits maximum. We could use 14 tiles to directly encode these 
28 bits using a reduced [4-color] palette. Alternatively, we 
can use the information in the guilloche encoding to 
determine which set of four colors to use, sequentially, for 
each tile. Regardless, even with this reduced approach, we 
have 42 tiles remaining for the last two parts of the SGTIN. 
(5) The item reference, which is in this example 16 bits, is 
encoded in another 8 tiles as described for (4). 
(6) The serial number, which is 38 bits, is encoded in another 
19 tiles as described in (4). 
 

After using up 41 tiles for the company prefix, the item 
reference, and the serial number, another 15 tiles still remain. We 
could use these, for example, to perform “power of 2” checkbits to 
the latter three fields—e.g. 5 for the company prefix, 3 for the item 
reference and 7 for the serial number. In this example, we used 
rudimentary encoding approaches to print the 96-bit SGTIN into 
two independent printed deterrents. In the next step, we build on 
this to incorporate physical security information into the VDP 
approach used. 

Physical Security 
Previously, we have performed threat analyses of security 

printing systems. Among our recommendations were the need for 
real-time logging and the need for relating the physical security to 
the security VDP job performed. Both of these require the physical 
security information to be securely stored. For the latter, however, 
hybridized security VDP—the establishing of a secure relationship 
between the data embedded in two or more security features—is 
recommended. 

Important physical security fields are shown in Figure 3. 
These include information associated with the print job—username 
and password of press operator, machine ID, timestamp, product 
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information (stock keeping unit, lot identification, manufacturing 
identifier, print job number, and even biometric information tied to 
the press operator. Several of these fields are also part of the 
SGTIN described above. 

 

 
Figure 3. Physical security field examples. Associated with the print job are 
the username and password of the press operator, the machine ID, the time 
stamp of when the job was initiated, product information (stock keeping unit 
[SKU], lot ID and/or manufacturing number), print job number and even 
biometrics such as fingerprint validation. 

Linking Physical Security to VDP: Security 
VDP 

Hybridization of the physical security to the variable data 
printing proceeds as follows. The physical security data is digested 
(trimmed to the appropriate lengths for each of the input fields, 
exceptions handled, etc.), concatenated into a single binary string, 
and digitally signed as necessary to produce the desired security 
and/or string length. This binary string now represents the physical 
security data, and is denoted BS

PSD
. If digitally signed, the original 

fields can only be recovered if the creator’s private key is 
available. This is the preferred security approach, since it 
introduces no new security risk over the risk also incumbent with 
the existence of private keys. 

Next, the BS
PSD

 is used to drive the security VDP data. As an 
example, suppose the barcode data comprises {10111000} and the 
first eight bits of the binary string are {11101001}. Then, a second 
deterrent—for example microtext characters—could be defined by 
the XOR of the first eight bits of the string with the barcode data, 
or {01010001}. If a simple hexadecimal set of characters are 
printed, this translates into a microtext string of “51”. The next 
eight bits of the binary string, say {00111010}, can then be 
XOR’ed with the microtext-generating string to produce the data in 
another deterrent, or {01101011}. This mechanism—chained 
XORing, is generally useful for preserving the entropy in the 
original BS

PSD
. 

In general, any of dozens of encoding approaches can be used 
with the BS

PSD
 to produce the printed security information. If the 

encoding approach is followed by encryption, then the output 
string used to write to the security deterrents will have high 
entropy (i.e., randomness commensurate with the strength of the 
encryption method). Why does encoding occur before encryption? 

Because in some cases the amount of variability (usually expressed 
as entropy) in the input fields (Figure 3) is low enough that 
successful attacks can be made on the encrypted data otherwise. 

The information in the BS
PSD

 can be used to link the deterrents 
together in a slightly more complicated manner. In this scenario, 
the first deterrent is encoded with raw data (or otherwise 
scrambling data) from the BS

PSD
, and the second deterrent is 

derived from the data in the first deterrent using the subsequent 
information in the BS

PSD
 to derive one or more of the following: 

 
(1) As the nonce for the XOR of the previous deterrent with 
the next deterrent (as described above for the microtext). 
This is described in shorthand by N

XOR
(L); that is, use length 

L of bits as a nonce for XOR the previous L bits. 
(2) As a key on appropriate length L

K
 for a CSA (Common 

Switching Algorithm) to encode the next deterrent of length 
L. This is described in shorthand Key

CSA
(L

K
,L). 

(3) As coefficients to a shift register used to encode the 
previous deterrent. This is defined in shorthand as SR(L

p
,L), 

where L is the length of the next deterrent derived from the 
shift register, and L

p
 is the length of previous bits used for 

the settings of the shift register. 
(4) As a specific code for switching between any/all of the 
previous three approaches on the fly. 
 

When used in this way, the binary (bit) stream BS
PSD

 can thus 
provide any desired level of complexity to the relationship between 
deterrents in the print job. Importantly, however, the approach is 
readily conveyed in shorthand: e.g. if we choose method (4), we 
might describe the encoding of 4 deterrents, with 38, 144, 10 and 
48 variable bits, as: 

 
BS

PSD
38 N

XOR
(38)  Key

CSA
(64,144) SR(6,10)  N

XOR
(48) 

 
This scheme requires 198 bits of data to encode 240 bits of 

data in the deterrents. An agent in the field can check a package, 
label or document solely by checking that: 

 
N

XOR
(38)  Key

CSA
(64,144) SR(6,10)  N

XOR
(48) 

 
occurs correctly, even if she has no access to the original BS

PSD
. 

Note that this shorthand would need to be accompanied by 
information on interpreting the settings and on which deterrents 
each step is applied to. This does not, however, limit its 
applicability to an off-line check of a printed item. 

Extension to Mass Serialization 
Mass serialization (Figure 4) is the process by which each 

item in a set of printed items (labels, packages, documents, etc.) is 
assigned a unique identifier, designated a unique binary string ID, 
or BS

IDU
. The simplest means to achieve this is to assign the 

numbers {0,1,…,N-1} where N=the number of items to be 
assigned a BS

IDU
 to the set S. Let L=length of each binary string. 

For security purposes, N << L (generally, • L/2) so that the 
expected value of the Hamming Distance (HD) between any two 
mass serialized items (Equation 1, where BS(A,*) is location * in 
the array of BS(A)) is sufficient to prevent guessing of legitimate 
mass serialized strings. 
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Generally, this requirement is easily achieved. With SGTIN, 
the serialization length L=38, and so for N • L/2 to hold we can use 
N=19, which allows us to use 219, or more than half a million, 
printed items with the odds of guessing a correct sequence also less 
than one in half a million. The mean HD should also be roughly 
L/2, or 19. 

 

 
Figure 4. Example section of a mass serialized set of binary strings. Note that 
the Hamming Distance (HD) between each string can be determined simply 
from the sum in Equation 1. HD is 10 in comparing the partial strings in the 
first and second row. 

Generating a mass serialized data set, then, requires no more 
than applying the following steps to each of the items printed at 
one time using the physical security to create the SVDP 
information: 

 
(1) Create the original binary string for the physical security 
information, BS

PSD
. 

(2) Write the current number (starting with index=0) in 
series for the printed item in the desired number of bits for 
the mass serialized; e.g. for the 1,777th item in a 38 bit 
serialization: 

{00000000000000000000000000011011110001} 

(3) Apply the appropriate encoding algorithm to the string, 
e.g. BS

PSD
38 where the first 38 bits of BS

PSD
 are: 

{10001101011010100111011100100100111110} 

(4) Create the mass serialized string from the appropriate 
encoding shorthand; e.g. BS

PSD
38 N

XOR
(38). 

{10001101011010100111011100111111001111} 

(5) Encode the mass serialized data in (4) into the correct 
security printing deterrent. 
(6) Print the deterrent as part of the VDP job. 

 
Note that when using this approach, the entropy of the mass 

serialized identifier is primarily dependent on the entropy of the 
BS

PSD
 (i.e. the first 27 of 38 bit positions simply repeat BS

PSD
). If 

the entropy of the BS
PSD

 strings is insufficient, this will be reflected 
in the mean HD of the mass serialized set. 

Conclusions 
This paper describes how physical security information can 

be incorporated into a variable data printing job to provide the 
desired level of per-item and per-job security. This is 
advantageous as shown not only for authentication of individual 
items, but also for validation of items when the original binary 

string is not available to the agent (e.g. off-line, outside secured 
environment, etc.) In this case, the agent can check if the 
relationship between the security deterrents is correct, which can 
provide a confidence level nearly that of having the original bit 
string—i.e. 202 of the 240 bits in the example given above—
without compromising any of the original bit string. 

This paper shows how many different encoding (scrambling, 
nonce, encryption, etc.) approaches provide a more dynamic SVDP 
environment, allowing the same deterrents to be used in perpetuity 
while still providing a “moving target” for would-be counterfeiters. 
That is, the hybridization approaches and linkages can be changed 
on the fly without changing the layout or aesthetics of the printing. 
The advantages of this on-ramp approach to preventing spoofing of 
security VDP jobs, and its advantages in brand protection and anti-
counterfeiting, are obvious. Training can be readily provided to all 
parties involved in authenticating products, and the training does 
not need to be completely overhauled when the security of the 
overall printing is compromised, since only the relationship 
between the variably printed items need be changed in response to 
this compromise. 

Finally, the broad applicability of the approach to mass 
serialization is outlined. The link between physical security and 
mass serialization is obvious—the serialized codes can be directly 
traced back to their creation (creator, press, time and location) for 
auditing and other (repudiation, legal, etc.) purposes. 
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