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Abstract 
Toner adhesion to printer components is an important factor 

in determining the force needed for good image quality.  

Controversy remains as to the dominance of electrical or 

mechanical (Van der Waals) forces as force measurements have 

yielded a large range of results. A new measurement tool has been 

developed to measure the cumulative distribution of toner 

adhesion from toner transferred onto an intermediate belt.  The 

tool consists of a metered pulse of air directed perpendicularly 

onto a toner isopel pattern.  Printed thin lines of toner were used 

to calibrate isopel removal to known air force.  Air velocity at 

toner level was found through Navier-Stokes.  Resulting removal 

distributions correlate to transfer field parameters.  The last few 

percent of toner remain attached to the substrate due to toner 

damage which results in high mechanical adhesion.  

Introduction 
Toner transfers when the electric field pulling toner from the 

donating member, usually a photoconductor or an intermediate 

belt, toward the receiving member, usually a belt or media, is 

greater than the forces of electrostatics and mechanical adhesion 

pulling it back.  Electrostatic forces are moderately easy to 

simulate, but mechanical adhesion forces are more elusive. In 

order to improve total system performance it is important to 

understand and measure all of the component forces.  As toner 

diameter decreases, Van der Waals forces become more 

significant.  It has been predicted that as toner diameters approach 

5 µm that these forces will limit toner transfer [2].  

 

If toner adhesion dominates in the small toner particle area, it 

will be important to minimize it in both toner and system design.  

The solution lies in finding ways to get mechanical adhesion 

uniformly down, and to do that it is important to be able to 

measure it. Many methods have been used to quantify the 

mechanical and electrical adhesion of toner [1].  A blow-off tool 

was used as it would be able to measure toner distributions as they 

actually exist in printer systems.  

 

The concept of a blow-off tool to measure toner adhesion has 

been in process for over six years.  The goal was to come up with a 

non-destructive and relatively quick method to quantifiably 

measure toner adhesion as it happened inside printers.  Since we 

were looking to use the tool to improve system performance, the 

results had to predict actual transfer based results.  A toner that had 

high measured adhesion needed to require more field to transfer 

for the tool to be considered valid. The tool had to quantify 

adhesion and be repeatable for the same set up tested months later.   

 

 

Tool Design and Function 

Any tool that will be practically useful for adhesion 

measurements will need to have the following five metrics: 

Range – the tool needs to remove almost all of the toner down to 

almost no toner remaining. 

Resolution – there needs to be enough of a gradual change in toner 

removal that useful comparisons between samples are possible.   

Response – the tool needs to respond to changes in variables the 

same way that a transfer system responds to those variables. 

Repeatability – when the same experiment is done two months 

later, it must give the same result. 

Reasonable – the calibrated force values should be reasonable as 

compared to published values.  

The method selected was blowing off toner with a pulse of air.  

The pulse was aimed directly downward, as that would allow for a 

closed form solution for the velocity profile.  The toner removed at 

specific distances from the nozzle could be measured optically and 

the images converted to toner removal by the use of internally-

written image analysis software.  

Hardware design 

Initial designs were improved to control positional and air 

pulse variables.  The following photograph shows the blow off 

portion of the tool.  The air pulse is held at one second and the 

pressure can be adjusted from 10psi to 20psi.  The belt sample is 

placed in a frame that holds the material both during the blow-off 

phase of measurement and in a locating fixture on an X-Y table of 

a microscope.   

  

 

 

  

 

 

Figure 1: Blow-off tool Air blows off toner
Transferred-on 
uniform half tone

Air pressure is controlled 
for value and duration
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Calibration  
 

Calibration of the adhesion tester falls into three parts, the 

first being determining the velocity of the air stream at the toner, 

the second being then determining the removal force from that air 

pressure, and lastly calibrating isopel removal forces from single 

toner removal forces.   

 

Air velocity at the toner 
 

The toner center line is sitting only a few microns above the 

surface of the belt, where the boundary layer makes the velocity 

laminar but non-uniform. The first step in determining that profile 

is to calculate the velocity at the edge of the boundary layer, Ur.  

Bernoulli is used to find the free stream velocity: 

 

p + ½ ρV2 + ρgh = constant      (1) 

 

Where p is the initial pressure, ρ is the density, V is the air 

velocity, g the gravitational constant and h the height.   

 

Assumes:  

Points 1&2 are on a streamline 

The fluid has constant density 

The flow is steady 

No friction 

 

The free stream velocity is then used as one of the boundary 

conditions for solving the Navier-Stokes equations.  Navier-Stokes 

is described by the London Mathematical Society as being “widely 

accepted as an excellent model of the macroscopic motions of most 

real fluids, including air and water.”  Navier-Stokes are force 

balance equations, and due to symmetry of the system the chosen 

equation of interest is the summation of forces in the radial 

direction only.  This equation can be stated in the form:  

 

 
ρ(δUr/δt + Ur δUr/δr + Uz δUr/δz) = -δp/δr  

 

+ µ[1/r δ/δr(r δUr/δr) + δ2Ur/δz2 – Ur/r
2] + ρgr    (2) 

 

Where Ur is the velocity as a function of r only, p is pressure, 

t is time, g is the gravitational constant, ρ is density, µ is viscosity, 

r is the radius, and z is the perpendicular distance. 

 

The solution to this problem is similar to that for Hiemenz 

flow and Homann flow.  Hienmenz flow is 2-D flow of air 

vertically pushed against a flat plate and constrained to exit either 

in the +/- X direction.  Because it is 2-D the bulk velocity goes 

down proportional to the distance traveled.  In Homann flow a 

fluid stream approaches an axially symmetric blunt nosed body at 

zero angle of attack.  This problem is solved in 3-D using 

cylindrical coordinates.  Again since there is fluid coming in from 

all around and the object is a curved surface, a linear drop off in 

bulk velocity is expected.  In this system the fluid velocity drops as 

the square of the distance traveled and is given by the Bernouli 

constraint stated earlier.  The other constraints are that the velocity 

of the air next to the boundary is zero, and then a Blasius boundary 

layer profile was used for layer thickness as a function of velocity 

and kinematic viscosity.   

 

δ(r) = (νr/Ur)
1/2         (3) 

 

Where: 

δ(r) = boundary layer thickness 

ν = kinematic viscosity 

The solution is given in the equation below for the velocity profile 

as a function of the radius out and the height above the transfer 

belt surface.  

(4) 

Toner removal force 

The air pressure exerts a sideways force on toner, and the 

resulting removal force is found by summing moments.  Recent 

work by Sweeney and Finlay [7] has resulted in a relationship for 

the Reynolds number for very small spheres in a Blasius boundary 

layer.  From their work also it is possible to determine appropriate 

coefficients of lift and drag from the air velocity on the toner.  The 

removal force will be the sum of the lift and drag forces.  The force 

that the removal force needs to overcome is the adhesion force, 

which is the sum of the Coulomb forces and the Van der Waals 

forces.   

 Scanning Electron Microscope (SEM) images were used to 

find the contact area, used as the moment arm for the adhesion 

forces.  Since the contact area is much smaller than the center of 

the drag force, the air has mechanical advantage in removing toner. 

The contact area found in the SEM image and that found from 

Johnson-Kendall-Roberts (JKR) theory [8] were fairly close, at 

about a tenth of a micron for the moment arm.   

 The following graph gives the calculated air velocity at a 

height of 6 microns above the belt surface for three different air 

pressures.   

 

 

 

 

 

 

 

Figure 2: Air velocity at 6 microns above belt surface  

Air velocity at 6 um above surface for three air 

pressures
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The lift force and drag force calculations are very similar in 

structure once the coefficients of lift and drag are known.   

FL = ½ CL ρ U2 A           (5) 

FD = ½ CD ρ U2 A           (6) 

Where FL is the lift force, FD is the drag force, CL and CD are the 

coefficients of lift and drag, U is the air velocity, and A is the area 

of the toner particle facing the wind. The coefficient of lift is 

roughly an order of magnitude lower than the coefficient of drag, 

and so the drag force is the dominant one in toner removal.  

Zoeteweij, van der Donck and Versluis [6] published the results of 

a series of experiments for removing small particles with air flow.  

They found that rolling was the removal mode for particles in the 

size range of toner, and this is borne out by the moment 

calculation.     

Calibration of isopels 

In a real printer system single particles of toner are not the 

issue.  Toner is transferred to intermediate member in small to 

large piles, generally one to two layers of toner deep.  Electrostatic 

adhesion of toner is impacted by the existence of similarly charged 

toner in close proximity.  In order to determine actual adhesion, it 

is important to remove particles as groups.  The complexity of 

doing that is that as toner is removed by rolling away from its 

initial location, toner strikes other toner and the removal force is 

magnified by the momentum of colliding particles. Particle 

collision is a statistical event and is therefore calibrated as such.  

The pattern used to measure adhesion had an isopel (25% 

coverage isolated dot) pattern on one half of the print area and very 

thin lines spaced 2mm apart on the other.  The assumption made is 

that the toner adhesion characteristics of the line and isopel toner 

are equivalent.  Toner is removed with the blow-off fixture from 

both sides of a sample and the percent toner removal is lined up.  

The line toner measurement is made in the first toner hit by the air, 

without other toner collisions.  The isopel removal will contain 

toner collisions.  By correlating the calculated force and removal 

percentage from the line samples, the equivalent spot can be found 

in the isopel pattern. 

 

 

 

 

 

 

 

Figure 3: Distance adjustment for isopel removal 

Figure 4 shows the relationship between the isopel removal 

rate and the removal of toner from a line sample. Doing this 

repeatably for samples with similar removal percentages gives a 

calibration curve for force at a distance in the isopel area.  Since 

the number of collisions impacts the force multiplication, several 

calibration curves have been created for low, medium and high 

removal at a given air pressure.  

Results 

 A review of the literature shows a wide range of force values 

for which toner has been removed, with “average” toner requiring 

anywhere from 40nN to 8000nN depending on EPA coverage, 

particle size and charge. EPA covered particles range from 40nN 

to 600nN, and uncoated toner from 100nN upwards.   Using 

Coulomb’s law a 6 micron diameter spherical toner at a relatively 

high charge of -40µC/g sitting alone should only require about 5-

9nN to overcome the image force. The literature also suggests that 

a pile of toner has the impact of magnifying the image force by 

roughly seven times, so a range of 35nN to 63nN is a reasonable 

expectation for toner removal to over come image forces for toners 

in any kind of group.  This would be electrostatic force only; any 

Van der Wals forces would be additional to that.   

 The other bracket on a range of adhesion force is the transfer 

force itself.  The Paschen limit in a 10 µm air gap limits the 

electric field to 3.5E7 V/m.  The Lorentz force for a toner of that 

charge would be 280nN.  This represents the strongest field that 

can be induced on that particle in a transfer nip.  Since most 

transfer nips are nearly 100% efficient, all but a few toner particles 

should be able to be removed with less than that field.  That gives 

a bracket to the adhesion force found in current production printer 

systems.  

An example removal curve 

The following toner removal curve demonstrates the type of 

output typical from the toner adhesion tool.  The toner being tested 

is from a production printer and the sample was taken at ambient 

temperature and humidity at full printer speed.  The measured 

values of adhesion correspond well to the predicted values.  

 

 

 

 

 

 

 

Figure 4: Toner removal as a function of force 

Adjusted distance vs. % toner removal for 10psi blow-off
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This is an example of a toner that is working very well in this 

printer system.  The second transfer efficiency is roughly 97% and 

the data reflects this in the fact that around that amount is removed 

by a force near 300nN.  The force scale has been changed to a 

logarithmic scale so that the removal profile at lower forces can be 

easily seen.  This particular sample had a mean charge of -27µC/g, 

which would give a “pile” image force of about 12.5 nN.  The data 

above suggests that half of the toner had only a minimal 

mechanical adhesion.  These are optimum conditions for toner 

transfer, and the system performance reflects that.  Systems tested 

in less perfect conditions reflected less perfect results.  

 The tool was tested for repeatability and found to very 

accurately reproduce the same adhesion curve when the same 

system was tested after a two month break.    

 

 

Adhesion Factors – Van der Waals forces   

 Scanning electron microscope images of toners from these 

samples reveal the cause of much of the difference between the 

easily removed toner and that which is tightly held.  As has been 

anticipated the average toner in the sample are strongly impacted 

by EPA coverage and how well that coverage, or the shape of the 

toner, minimizes contact area with the transfer belt.  Loosely held 

toner can be seen sitting up on a few EPA’s or resting on only a 

tiny portion of the toner radius.  These toners exist in high 

percentages in toner that is removed with little force.   

 

 

 

 

 

  

 

Figure 5: Lightly held toner particles 

The toner that is tightly held can frequently, but not always be seen 

to have high mechanical adhesion.  This can be caused by lesser 

quantities of EPA’s or from damage to the toner that happens 

during the transfer process.   

 

 

 

  

Figure 6: High mechanical adhesion toner particles 

 

Adhesion Factors – Charge 

Charge also turns out to be a significant factor in toner 

adhesion.  Samples of the same toner system were charged 

differently and measured as they entered 2nd transfer.  If the toner 

removal at the same distance is plotted against the mean charge of 

the samples, the result is a linear relationship until the mechanical 

adhesion limit is reached.  At that point reducing charge does not 

increase toner removal.  The mechanical offset varies from test to 

test as the data was run in multiple environments. 

 

 

 

 

 

 

 

 Figure 7: Toner removal as a function of average particle 

charge 

The charge relationship is not a simple image force only 

relationship with adhesion.   Theories have been advanced 

concerning non-uniform charge which could result in changes in 

toner adhesion characteristics [9-11].  The following SEM image 

shows such a charge-patch non-uniformity at work just before 2nd 

transfer.  

 

 

 

 

 

Figure 8: Non uniform charge causes unusual adhesion 

behavior.  

Conclusions: 

 A toner adhesion measurement tool has been created that 

measures toner as it exists inside a printer system.  The tool has 

been calibrated and gives results that correspond with predicted 

adhesion values.  Both electrostatic and mechanical adhesions are 

seen in the toner samples, and increased charge or increased 

contact area causes measurable increases in toner adhesion.   

 

Toner removal % as a function of charge for two 

different environments
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