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Abstract

While barcodes are a popular means for encoding
information for printed matter, they add unsightly overt content. If
an image is already part of the composition of a printed label or
page, hiding information in that image is an attractive alternative
to barcodes. This paper offers a new method for encoding
information in the halftone of an image. We focus on the class of
techniques that perform clustered-dot halftoning, as commonly
used in both dry toner and liquid toner electrophotographic
processes. The method takes as input any grayscale image and a
payload of data to be encoded and produces a bitonal clustered-
dot halftone of that image with selected halftone clusters shifted to
carry varying numbers of bits from the payload. The resulting
data-bearing steganographic halftone is referred to as a
“Stegatone”. Because of the small size and large number of
clustered-dot cells in printed halftones the bit density is quite high
— over 2000 bytes/square-inch. Scans of test printed stegatones
from a number of printers support the robustness of the method
with high recovery rates.

Introduction

Technologies for enabling data-bearing hard copy afford a
number of interesting applications. These include security and
forensic applications for labels, packaging, signage, and documents
in general. While barcodes are a popular means for encoding
information, they add unsightly overt content. A more attractive
approach is to embed information in images — not in the image file
as is done in traditional watermarking, but in the halftone on the
printed page. In this paper we present a solution for the class of
rendering techniques used in most commercial printers: clustered-
dot halftoning. Both dry and liquid electrophotographic printers
use clustered-dots because they are more stable than dispersed-dot
halftones. While dispersed-dot halftoning is preferred for inkjet
printers, these printers can certainly also render clustered-dots,
making this technique suitable for essentially all print products.

Hiding information in continuous-tone image data is often
referred to as “watermarking” and has a long history of research.
Since the nature of such encoded images change considerably
when halftoned for printing, some work [1] has looked at methods
that allow the continuous-tone encodings to survive the halftoning
process. Most efforts to embed information in the halftone itself
focus on dispersed-dot dithering applications. A survey [2] of such
techniques was recently published. Most approaches use a form of
error-diffusion.

One solution conveys data using blocks of output pixel shapes
[3]. Some techniques employ a watermark to convey visual
information [4][5]. One such idea uses two halftoned versions of
the same image that must be overlaid to reveal the hidden bitonal
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watermark; the complementary halftones are called “conjugate
pairs” [6][7]. Dispersed-dot dithering approaches also hide data by
manipulating image edges [8], or by toggling pairs of pixels [9].
At Purdue, Allebach has pursued the policy of not disturbing the
data and instead has focused on embedding data in sub-pixel
offsets available in some electrophotographic printers; he calls this
the “printer mechanism” in his feasibility studies [10].

Clustered-dot halftones have been used to carry information
by creating asymmetric shapes in the clusters, such as ovals [11],
and manipulating shape orientation to encode a bit.  Limited
information can be embedded in clustered-dot screens by altering
their phase and frequency [12]. For recovering individual ink
patterns from color clustered-dot printed halftones, a solution for
separating the scan of such halftones is reported [13]. Anoto [14]
covers an entire page with dots of the same size and shape where
every dot is shifted from a nominal position as a form of encoding,
but is not in any way used to halftone an image or encode an
arbitrary payload.

There has been no known prior effort to use shifts of
clustered-dot halftoned clusters as a means for embedding data.

Clustered-Dot Halftoning

The nature of any ordered dither is dictated by a deterministic,
periodic array of threshold values. In the case of clustered-dot
halftoning, the thresholds are arranged so that output pixels will
form increasing sizes of white clusters as input values increase
from full black, and then ever decreasing sizes of black clusters as
input values further increase to full white. This rule or order of
thresholds is first specified by a dither template as shown in Figure
1. This 8x8 matrix contains values from 0 to 63 that define the
order that cells will be turned “on” or “white”. This arrangement
forms a classical 45-degree screen. On a 600 dpi printer, it will
have a screen frequency of 106 lines/inch.

The 4x4 shaded regions depict shadow cells, and the 4x4
unshaded regions depict highlight cells.  Shadow cells will be
white holes surrounded by black, and highlight cells will be black
clusters surrounded by white. The actual threshold values that will
be used to compare against 8-bit input pixel values have to be
normalized.

14 12 16 20 49 51 47 43
10 0 2 18 53 63 61 45

30 26 24 28 33 37 39 35
48 50 46 42 15 13 17 21
52 62 60 44 11 1 3 19
54 56 58 40 9 7 5 23
32 36 38 34 31 27 25 29

Figure 1. Dither Template.
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To be mean-preserving, the follow relationship is used to

scale the template values T[x,y] to threshold array values A[X,y]:

Alx,y] =255 —int{ (255/64)(T[x,y] + V) }
The halftoning algorithm uses this array to compare with an input
pixel [; to binarize the output pixel I, as follows:

if; 2A[xy] I,=1; elsel,=0

For areas of constant pixel values in the input image, the 4x4
highlight cells will take on the shapes shown in Figure 2(a). The
“size” of the center cluster, i.e., the number of white pixels that
comprise the cluster, is indicated next to each cell. Likewise,
Figure 2(b) lists all 16 shadow cells with the number of black
cluster pixels. This list of cell shapes is of course dictated by the
specification of the dither template in Figure 1.

A common misunderstanding is that these cell shapes are
simply used as symbols that replace a gray level value in the
image. It is important to note that when the input image contains
high frequency detail that passes through a 4x4 cell, the shape of
the cell will not appear as shown in these figures. The deviation of
these shapes in response to edge detail is referred to in the industry
as “partial dots” and is important for more accurate rendering.

(a) Shadow Cells:
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(b) Highlight Cells:
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Figure 2. White and black clusters for (a) shadow cells and (b) highlight cells.
The sizes of the clusters (in pixels) are also indicated.

Carrier Cells

In our solution, information will be embedded into a subset of
these cells by single pixel shifts. Note that not all clusters have the
same degree of freedom to move. We define the cells that have
room to move to at least 2 single pixel shift positions “carrier
cells”. In Figure 2, cells with size 1 through 9 are potential carrier
cells.  Cells 1 though 4 can move to all 8 surrounding positions
and can thus carry 3 bits. Cells 5 and 6 can move to 4 positions
and carry 2 bits. Cells 7, 8 and 9 can move to 2 positions and thus
can only carry 1 bit.

The mapping of 1-, 2-, and 3-bit codes to shift positions are
defined by a Shift Rule as shown in Figure 3. The unshifted
position is shown in the center of each 3x3 array. An entry of “x”
is used to indicate shift positions that are not used, and non-zero
entries indicate the shift position of a code of that particular value.
For example, for the 1-bit carrier shift rule, embedding a code of
“0” will cause a shift right by 1 pixels and a shift up by 0 pixels;
embedding a code of “1” will cause a shift right by 0 pixels and a
shift down by 1 pixel. Sample shift positions for 1-bit, 2-bit and 3-
bit carriers are illustrated in Figure 4.

1-bit carrier 2-bit carrier 3-bit carrier
X | x| x X X 0o(1|2
X 0 X 1 7 3
X X X 2 6|5]|4

Figure 3. Carrier Shift Rule.

In each of the 1-, 2-, and 3-bit cases of enabled carrier cells an
unshifted carrier is reserved for a special symbol: a marker cell.
Marker cells are an important means to communicate special
signals to the recovery system. Several consecutive marker cells
can be used, for instance, to indicate the separation between
separate streams of payload bits.

While highlight and shadow cells 1 through 9 have the
potential to move in directions as described above, it may not be
possible to detect them all reliably during recovery. The viability
of a particularly sized carrier cell to be detected at each of its
candidate shift positions must be evaluated for the targeted printer.
Knowledge of the recovery rates for each highlight and shadow
cell must be incorporated in the encoding process. This goal is
realized by a Selection Rule consisting of a table that specifies
which carrier cells will be used, along with the bit-carrying
capacity of those cells.

shifted —»
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Figure 4. Shift positions for 1-, 2-, and 3-bit codes as defined by the Carrier
Shift Rule.
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Stegatone Generation System

The continuous-tone input image is referred to as the “Mule”
image because it will carry the hidden data. The output is a
steganographic halftone, or “stegatone”, that is targeted for a
specific type of printer. A special subsystem called the Reference
Image Generator is central to stegatone creation, and will be made
available for the recovery system. The principal outputs are the
Reference Halftone, and a Reference Map. The Reference
Halftone is the standard clustered-dot halftone of the Mule
identical to the Stegatone, but with all dot clusters unshifted. The
Reference Map defines the bit-carrying capacity of each cell in the
halftone. The input image will be segmented into blocks that
correspond to halftone cluster locations. In the examples used in
this document, halftone cells are comprised of 4 by 4 pixels. These
cells are temporarily flattened by having all 16 pixels set to a value
equal to their average.

The Reference Map Generator

The Reference Map has one pixel value for each halftone cell
region, and is thus 1/4 the size of the input image in each
dimension. It is this map that segments all 4x4 cells in the image as
either carrier cells or non-carrier cells. Non-carrier cells are also
called “reference cells” because they do not contain shifted clusters
and can be used as anchors by the recovery system to establish the
cell boundaries across the Stegatone. The value of pixels in the
Reference Map are equal to the number of bits that cell is capable
of carrying. Carrier cells have a value of 1, 2 or 3. A value of 0
indicates a reference cell. It should be noted that the Reference
Map compresses to a size much smaller than the Mule since it has
on ly 1/16 the number of values and only 2 bits per value.
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The Reference Map is derived from the input image, with all
4x4 cells set to the average of that cell, and the carrier cell
selection rule described earlier. With reference to the Dither
Template (Figure 1), the image is first segmented into highlight
and shadow cell regions. The Reference Map is populated by
matching the cell average value to the number of bits defined by
the carrier section rule. In Figure 5(a), a portion of an example
Mule image in shown enlarged 3 times with its corresponding
Reference Map in Figure 5(b). For the purpose of illustration, 1 bit
carriers are shown in blue, 2 bit carriers in green, 3 bit carriers in
red, and reference cells are shown in black. The Reference Map
Generator also delivers a Carrier Count. The Carrier Count is the
total bit capacity of all carrier cells in the Mule Image. For the
Mule Image and Selection Rule in our example, the carrier count is
18,961 bits. The 600x600 pixel (1x1 inch) image has a total of
11,250 potential carrier cells of which 8,660 (or 77%) are
identified as Carrier Cells.

It is important to note that only the cells identified as carriers
in the original image are flattened (by replacing the cell with its
average). The reference (non-carrier) cells areas are left intact for
image quality reasons. These cells will retain the untouched high
frequency detail that will be manifested as partial dots in the output
halftone. The Reference Image Generator subsystem uses the
Reference Map to selectively flatten cells before creating the
Reference Halftone. For our example Mule image the Reference
Halftone Image is shown in Figure 5(c).

(@) (b)

(@;

Figure 5. Enlarged portion of an example encoding. (a) Input “Mule” Image,
(b) Reference Map, (c) Reference Halftone, (d) Stegatone.

Encoding the Payload

The Payload is the digital data to be embedded in the
stegatone.  Recovering from errors introduced into digital data
encoded in halftone clusters can be thought of as similar to the
process of reading a Compact Disc (CD). When decoding a CD,
various types of redundancy and auxiliary information are used not
only to compensate for the uncertainties associated with reading

604

the physical pits in the media, but also to handle anticipated
scratches and other degradations. Similarly, Stegatone prints are
affected by uncertainties introduced in the process of printing and
re-acquiring the image, which induces degradations such as
smudges and other deformations caused by effects such as ink
splatter, paper motion and optical blur.

The Carrier Count that is delivered from the Reference Map
Generator for a given Mule Image and Carrier Selection Rule is an
important piece of information to determine the size of Payload
that can be accommodated. For Payload bit counts that are shorter
than the Carrier Count, the Payload can be simply repeated over
and over until all carrier cells are used. Alternatively, error
correction codes can fill the available carrying capacity. A Shift
List Generator uses the Reference Map to determine the order of
Carrier Cells and their associated capacities. It separates the
Payload into 1-, 2-, or 3-bit pieces according to the current carrier
cell. The up-down, left-right shift is specified by the Carrier Shift
Rule (Figure 3) for the number of bits used. The result is a shift
list.

A Cell Shifter takes as input the Reference Halftone Image
and generates the Stegatone. Special markers are indicated by
unshifted carrier cells to assist recovery as mentioned above. The
example Stegatone in Figure 5(d) used 3 marker cells to separate
repeating instances of the Payload.  Note that the small
perturbations due to the encoding shifts impart a blue-noise-like
visual appearance to the resulting rendering.

Printer Calibration and Recovery Rates

To determine the Carrier Selection Rule for a target printer, it
is necessary to quantify the recovery rate for each type of cell,
since not all carriers will survive the print-scan process. For this
purpose, we use a special Mule Image that can uniformly test all
candidate carrier cells. A non-trivial problem was devising a
single repeating payload that would test all shift positions of each
code. We want a string of bits that when separated into 3-, 2-, or
1-bit parts represents each possible code an equal number of times.
This property is desirable so that the resulting recovery statistics
are not biased by more of one type of code than another. Having a
payload with this property allows for all codes to be tested in
parallel, thus simplifying the calibration procedure. We found a
solution for this problem and used the associated payload for our
measurements. This payload was embedded in our special Mule
Image to create a test stegatone which we printed on several
different printers, then scanned the results.

For proper recovery, alignment is a central problem. Since we
are measuring single pixel shifts, the scans must be de-skewed,
scaled, and offset with sub-pixel accuracy to align the grid of cell
boundaries. We found that every printer has slightly different
horizontal and vertical pixel periods that must be addressed. Also,
correction for “shearing” where the pixel grid deviates slightly
from orthogonal must be performed in some cases. We then use a
mean-square-error-based best match approach to read carrier shifts.
Figure 6 shows a magnified sample of the same tiny crop region
from our test scans for 4 example printers, along with the unshifted
reference halftone and source stegatone used for testing. These
images are part of the full test stegatone where each carrier type is
shifted 300 times. Alignment grid lines are overlaid to show the
4x4 cells.
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Figure 7 shows the results for these printers where recovery
rates are expressed using the percentage of correctly decoded bits
for each highlight (H) and Shadow (S) carrier cell size. This data
helps us to reject the use of carriers that perform badly; in the
figure, rejected carriers with poor recovery are indicated by a gray
background. In all cases, these cells were small shadow cells
where the tiny white shadow dots were consumed by the
surrounding dot gain and rendered incapable of detection.
Eliminating these poor performers, we then calculate the aggregate
recovery rate for a printer by weighting the rate for each cell by the
number of bits that cell can carry. Aggregate recovery rates for
these printers are as follows:

B&W Laser 96.5%
Color Laser 97.9%
Inkjet 95.8%

Indigo 7000  99.4%

The results suggest that clustered dot halftones demonstrate
enough robustness to indeed carry significant payloads. The per-
cell recovery rates, combined with appropriate error correction
coding, can ensure a reliable mechanism to embed and recover
data in hard copy documents without unsightly bar codes.

(a) Reference

(b) Stegatone Source (c) B&W Laser
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Figure 6. Tiny portion of scans of printed calibration stegatones on various
printers enlarged at 12.5x.

Printer H1 | H2 [H3 | H4 |H5 | H6 | H7 | H8 | H9
B&W Laser |91.8|97.1[{97.3]97.4|90.5]95.8|99.3|99.3]99.3
Color Laser |93.3]97.8199.2/99.8| 100]98.7| 100| 100| 100

Inkjet 91.3]93.2192.9|97.0|95.0|98.2]98.7]98.7]99.3
Indigo 98.3]1100| 100| 100| 100| 100| 100]99.7] 100
Printer S1[S2|S3|S4|S5|S6|S7|S8]|s9

B&W Laser |56.3]|90.7|94.6|94.2|97.8|96.8]99.7]|99.3]99.0
Color Laser |42.9]56.4|73.0/90.1|95.5|96.5|98.0| 100|99.7
Inkjet 48.4]156.8]76.8]185.0182.7|93.0|95.7|96.7[96.3
Indigo 39.2147.1167.2]97.0197.5]99.2]99.7] 100|99.7

Figure 7. Measured recovery rates for each Highlight (H) and Shadow (S)
carrier for 4 sample printers. Gray boxes indicate rejected carriers.
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