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Abstract 
Security barcodes and other “actionable” barcodes have 

become commonplace as a consequence of the recent ubiquity of 

mobile phones equipped with high-quality cameras. In this paper, 

we provide methods for quantifying the entropy of the embedded 

barcode data, assuming methods other than the standards-

specified error correcting code (ECC) approaches can be adopted. 

Entropy, which reduces the likelihood of a fraudulent agent being 

able to “guess” correct barcodes, is measured directly using a 

variety of novel algorithms and applied to large sets of barcodes. 

Our data, however, show that removing ECC provides the 

additional advantage of increasing entropy. Thus, all other 

settings (data payload size, printing technology, substrate used, 

etc.) being equal, eliminating the ECC will increase the security of 

the information content. 

Introduction 
Barcodes are not just for ringing up sales anymore. Many 

organizations (ScanBuy, Microsoft, etc.), standards bodies (OMA, 

GS1 Mobile Commerce, etc.) and consortiums have specified the 

data models for barcodes to be captured at point of sale, as a means 

to connect to a website, or for consumer capture of salient content 

about products and/or their surroundings [1]. 

Increasingly, the older 1D barcode standards (e.g. Code 39 

and UPC) traditionally used at point of sale have been replaced 

and/or augmented with 2D or 3D barcodes. These high-density 

barcodes can be used for additional data carrying (e.g. mass 

serialization) or referencing (e.g. URL pointing) aims. Barcodes 

are typically encoded with error-correcting code (ECC), which is 

added to make them more robust to certain types of distortion and 

damage. However, the nature of the ECC added is derived from 

assumptions—such as Shannon entropy—more relevant to 1D 

barcodes or general information theory. As such, the use of ECC 

itself can be questioned—which opens the door to using barcodes 

as information carriers outside of the current barcode standards. 

Our experience has shown that the most critical barcode 

distortions to address are (a) effect of the print-scan (PS) cycle, or 

“copying” cycle; (b) localized damage such as water damage 

and/or puncturing; and (c) blurring [4]. We have shown in 

previous work that it is advantageous to either (a) increase the size 

of the barcode modules themselves or (b) duplicate the barcode 

data itself within the barcode, in place of ECC [5]. The latter 

typically results in a barcode “unreadable” to the current standard 

for the symbology, and allows custom interpretation of familiar 

barcode representations. 

In this paper, we describe an attempt to highlight the 

differential effects of scrambling methods on entropy by applying 

encryption methods to randomly generated strings, both with and 

without ECC. Increased entropy, which reduces the likelihood of a 

fraudulent agent being able to “guess” correct barcodes, is 

measured directly using a variety of novel algorithms and applied 

to large sets of barcodes.  

We discuss the implications of these findings on overall 

security printing and forensic printing ecosystems. Since large 

organizations are responsible for much of the fraud—

counterfeiting, factory overruns, diversion, smuggling, rebate 

fraud, etc.—that currently exceeds 8% of world trade [6], an 

effective security ecosystem is designed to decrease the initial time 

to discovery and enable efficient and accurate assessment of the 

size of the counterfeiters involved. The barcode scrambling 

approaches outlined herein are an important part of that ecosystem 

of combined security printing, investigation/evidence gathering 

and prosecution. 

Entropy Measures 
We used three entropy measures on a dataset of 672,000 2-

dimensional barcodes, half incorporating Reed-Solomon ECC [2], 

with the other half having no ECC. We used entropy as a measure 

for the effect of ECC and scrambling on the 2D barcodes. Here, 

entropy represents signal randomness, i.e. how the bits are 

distributed in a signal. For example, Equation 1 presents what we 

name “Normalized Entropy”, where N is the maximum number of 

run lengths (of 0’s or 1’s) and E(X) is M *(½)i, which is the 

expected number of run lengths of each length i. x is the actual 

number found in each bin i and M is the total number of all run 

lengths. 
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Equation 1 – Normalized Entropy 
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Figure 1: Expected bin % for Maximum Entropy 

Figure 1 shows a graph of the expected bin percentages for 

maximum entropy of a signal. For example, if we have a string 

with 32 different runs of 1’s and 0’s, there should be 16 run 
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lengths of 1, 8 run lengths of size 2, 4 run lengths of size 3, and so 

on. 

Figure 2 shows three characterizing e1 values using the 

Normalized Entropy algorithm: the maximum entropy, low entropy 

wherein all the run lengths are approximately equal, and a 

minimum or no entropy when the string is essentially all 1’s or 0’s. 

As can be seen, higher entropy results in a lower value for e1. 
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Figure 2: Sample e1 Values for Max, Low, and Minimum Entropy 

We used another entropy measure, based on Hamming 

Distance, shown in Equation 2 (e2). In this case, N refers to the 

maximum Hamming Distance (HD) between two bytes and x refers 

to the normalized i HD of the actual strings. This HD is calculated 

on a moving window along a string in a forward direction. Figure 

3 shows the general trend for this measure. For example, if the 

string contains a pattern of 1’s and 0’s such that the hamming 

distance is always the same (1100110011001100), entropy would 

be low. An additional HD measure (e3) was also used, which is 

similar to Equation 2 except that the HD is calculated by moving 

the window in any direction. 
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Equation 2 - Hamming Distance Entropy 
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Figure 3: HD Entropy - Sample e2 Values for Max, Low, & Minimum Entropy 

We used these measures because they are insensitive to string 

length, the expected values are easy to compute, and they converge 

quickly. 

Scrambling Techniques 
In order to test encryption methods, we ran several 

experiments using the three entropy measures on four scrambling 

algorithms. A test run consisted of 500 randomly generated strings, 

with an average length of 310 bits for each of the typical single 

block barcode symbol sizes of 12x12 up to 26x26 each with 

module sizes from 12 to 18 pixels. This generates 28,000 

individual barcodes. Each test also has an associated scrambling 

algorithm and entropy measure. Each test was run twice; once 

using the maximum number of ECC bits allowable for the size and 

once using additional randomly generated data where the ECC bits 

would normally be inserted. A total of 672,000 barcodes were 

tested with half containing ECC bits and half without. 

The four scrambling algorithms consisted of the following: 

1. XOR: A randomly generated string of the same size as the 

entire string (message + ECC bits) and XOR’d with the input 

string. 

2. Structural scramble: Divide the string matrix into equal sized 

structures (squares, rectangles, etc.). Swap bits within each 

structure so that the new structure is a mirror image of the 

original.  

3. Even Check Bits: Add a check bit at the end of each row and 

column so that the total number of black modules is even. 

4. Odd Check Bits: Add a check bit at the end of each row and 

column so that the total number of black modules is odd. 

Tests 
 

“Challenging” the entropy of the string set with another random 

string should result in different responses if the string is not as 

entropic as the challenge string. For example, Figure 4 

demonstrates that when the completely random number is 

challenged there should be no difference in the entropy between 

the two randomly generated strings. However, when the string 

contains ECC, there may well be a detectable difference in the 

entropy between the string with ECC and the randomly generated 

challenge string. This is indicated by the oval surrounding the 

place within the string that contains ECC. One of the main 

objectives of these experiments is to determine whether that 

difference is detectable. If so, finding the best scrambling 

algorithm along with the most sensitive entropy measure to 

highlight differential effects leads us to a recommendation for 

adding security mechanisms to 2-dimensional barcodes. 
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Results and Discussion 
Figure 5 shows the results for Normalized Entropy using all 

the scrambling techniques for ECC and NonECC strings. For each 

symbol size, the result is the percent change of entropy between 

the input and output strings. For example, results for the 12x12 

symbol shows that the change in mean entropy for the string 

containing no ECC was very small. This makes sense because 

scrambling a fully random string should result in another random 

string. The entropy of 12x12 symbols with ECC, however, 

increased (by more than 5%) after scrambling. This is also logical 

as scrambling a string containing non-random bits should result in 

a more random string. These results look promising for developing 

a method for detecting attacks using the change in entropy after 

scrambling. 
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Figure 5: e1 Normalized Entropy Results– ECC vs NonEcc 

 

The next thing to look at is the population statistics. Figures 6 

and 7 are the input and output mean e1 values for ECC and non-

ECC along with the standard error for the XOR scrambling 

algorithm. Unfortunately, these results are representative of the 

results for all the scrambling algorithms. The main conclusion to 

be drawn from these figures is that there is no way to distinguish 

between ECC and non-ECC strings by looking at difference in 

input or output means only. 
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Figure 6:e1 Input Means Compare -- ECC vs. NonECC 

Normalized Output Means - XOR ECC vs. NoECC
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Figure 7: e1 Output Means Compare - ECC vs. NonECC 

 

In Figure 8, the data for Figures 6 and 7 are combined to 

show the input and output Normalized Entropy (e1) means for ECC 

and non-ECC using the XOR scrambling algorithm. This figure 

highlights the difficulty in finding differences using population 

statistics. 
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Figure 8:e1 Mean Entropy Comparison -- ECC vs NonECC 

 

Results are more pronounced between ECC and non-ECC 

using the Hamming Distance measures (e2 and e3) than for the 

Normalized Entropy measure. Figure 9 shows the first HD measure 

for ECC and non-ECC signals. Here, there is a detectable 

difference between the signals containing ECC and those that do 

not. Recall from Figure 3 that as a signal becomes less random, 

this entropy measure decreases. Figure 9 demonstrates that the 

change in entropy after scrambling results in higher entropy (less 

randomness) for both the ECC and the non-ECC strings. For the 

majority of the symbol sizes, e2 output values are lower than input 

values. Figure 10 contains the results for the 2nd HD entropy 

measure (e3). These results are very close to those of the 1st HD 

measure.  Again, the answers seem logical. The ECC strings start 

out with more structure than the non-ECC string and become more 

random after scrambling.  
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HamDistWind Entropy Measure - ECC vs. NonECC
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Figure 9: e2 HD Entropy Measures ECC vs. NonECC 

HamDistSpace Entropy Measure - ECC vs. NonECC
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Figure 10: 2

nd
 HD Entropy Measure (e3) ECC vs. Non-ECC 

 

If we look at individual results, any of the scrambling 

algorithms along with the Hamming Distance measures give us 

typical results in terms of separation between ECC and non-ECC 

strings. As an example, Figures 11-15 show the population 

statistics for the input and output means when using the XOR 

scrambling algorithm. The other scrambling algorithms show 

similar results. The data points contain only half the error bar in 

order to show the magnitude of the standard error. Obviously these 

two populations overlap and cannot be distinguished with any 

reasonable level of statistical confidence. In general, while the 

change in entropy after scrambling of the non-ECC strings is 

detectable, the population statistics (Figures 12-15) show that 

detecting the difference between ECC and non-ECC signals using 

population means is not easy, and is possibly impossible (and 

certainly impractical) using these methods. 
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Figure 11: XOR Scrambling with HD % Change 
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Figure 12: XOR Scrambling with HD - Input Mean 
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Figure 13: XOR Scrambling - Output Mean 
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Figure 14: XOR Scrambling - StdErr Input 

HanDistWind Entropy -- StdErr Output     
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Figure 15: XOR Scrambling - StdErr Output 

Conclusions 
We have presented three entropy-based methods for 

determining the degree of randomness in a signal and the affect of 

scrambling on the outcome of these methods. In our case, we used 

two-dimensional barcodes because of the ubiquity of these 

symbols in supply chains of virtually every manufacturing sector. 

As the incidents of counterfeiting continue to raise, security at each 

node within the supply chain becomes more critical. The Data 

Matrix standard [2] does not take this type of security into 

consideration, as the ECC within the signal has structure and is 

therefore vulnerable to attacks. We have shown that our entropy 

measures and the appropriate “attack” can detect the difference 

between a truly random signal and a signal that contains structure. 

This can be used to discover whether ECC has been used on a set 

of materials, and if so potential vulnerabilities of the security data. 

The methods described here can also be implemented to determine 

whether data is encrypted, since proper encryption should also 

work to maximize entropy. As shown, it is possible to interrogate 

the entropy of the comprised signal and compare it to the original 

entropy values. 
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