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Abstract 
Printing provides innate forensic capabilities useful for 

product security as a consequence of the microscopic stochastic 

nature of the printing process itself and ink/substrate interaction 

during printing. This is especially true for substrates with a high 

degree of surface roughness/porosity, such as office paper, 

recycled paper, cardstock and packaging. Further imperfections 

are incurred during high speed printing, which taxes the 

limitations of the printing processes. These imperfections, 

consistent with reduced print quality, can be used serendipitously 

to provide a unique identifier for any printed symbol. This paper 

describes the hardware design for an imaging device that can 

analyze, with 7600 lines/inch resolving capability over a relatively 

large field of view of 6.6 x 4.9mm, any printed mark—from 

character to glyph to outline of an image—with high mark 

specificity. Combined with image analysis software written to 

describe the interface, or boundary, between ink-covered and ink-

free substrate, this device, dubbed the Dr. CID (Dyson Relay 

CMOS Imaging Device [1]), can provide simultaneous image 

authentication and forensics. 
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Introduction 

The volume of counterfeit goods worldwide continues to 
grow. OECD figures from 2007 indicate the worldwide costs to be 
around $250B and rising year on year. The presence of fake items 
undermines confidence and is damaging to individual brands as 
well as to entire sectors. Certain affected industries like the 
pharmaceutical and electrical items etc, suffer from the added 
problem that there is a safety risk with counterfeit goods and a 
direct impact on human health. Furthermore, organized crime is 
attracted to counterfeiting because of the significant returns for 
little investment and lack of effective policing.  

With globalization, there is increasing pressure to address the issue 
as the items that are being counterfeited continue to expand into 
areas that affect safety. However the internet and current offering 
of cloud based services means that, the hitherto issue of added cost 
of the system means that barrier to adoption is lowering. Once item 
level track and trace systems (or mass serialization) are in place [2] 
then the added cost of item specific data that provides 
authentication is low. Our proposal to use printed elements such as 
2D or 3D barcodes further enhances the route to mass adoption 
with a minimum of disruption to the product flow. 

Looking at figure 1, the images of small 6pt characters printed on a 
thermal inkjet printer (TIJ) clearly show small aberrations, the 
majority of which can be described at a sub 10µm level. It is 
important to note that this microscopic range is smaller than the 
smallest addressable single droplet firing of a TIJ printer thus, even 

if it was scanned with a specialist scanner at sufficient resolution 
(most mainstream scanners have a maximum optical resolution of 
1200dpi, or 21µm/dot) it would not be possible to address and 
deposit drops that would re-create the irregularity especially as the 
substrate will interact with the ink in a similar random way to the 
original as well as having to attempt to pre-compensate the drops 
for the random errors in the nozzles and time of flight. Comparing 
a like for like region of the two letters in figure 1, which were 
printed successively on the same line of a single page by a printer, 
it is clearly visible that the random elements create a ‘fingerprint’ 

[3], [4]. 

 

   
Figure 1.  Thermal inkjet signatures. 6pt letters printed successively on an 

HP K5400 inkjet printer (40x magnification). 
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Figure 2.  Images from different stock with an HP D7260 TIJ printer  –   
top left is uncoated, top right is office, bottom left is photo and bottom 

right is craft paper.  

  
Figure 3.  Images from different stock – HP Indigo 5000 (LEP) plain paper 

left and HP LJ P4515 right. 

The images in figures 2 and 3 show how the microscopic variation 
is linked to substrate and print quality. It is also worth noting the 
types of aberration – from random imperfections in the boundary 
from the wicking of the ink along exposed paper fibers [5] due to 
the ink and paper interaction, to droplet tails and some boundary 
imperfections arising from the random variation in ink ejection and 
flight. The image in figure 3, printed on an Indigo liquid 
electrophotography printer, reveals a more controlled process with 
fewer variations and the office laser image has stray toner particles 
near the boundary. The relationship between print quality and 
structures suitable for providing forensic matching is inversely 
proportional. 

 

 
Figure 4.  Dr CID Prototype 

Approach 

USB-powered and approximately the size of a marker pen 
(figure 4), the Dr. CID (Dyson Relay CMOS Imaging Device [1]) 
is easy to calibrate, focus and use. The use of a Dyson Relay 
configured lens provides a high resolution and large field of view 
with only one refractive surface and one reflective element (figure 
5). 

 

 
Figure 5.  Basic Dyson Relay Lens Configuration 

The suitability of this design is revealed when we look at the 
required resolution. To resolve sub 10µm features the spatial 
sampling should be in the low µm range. Currently most 
mainstream CMOS image sensors have pixels in the 2-5µm range 
thus we can explore a class of 1:1 optics.  The design illustrated 
below uses a mainstream 3MP 3.2µ pixel sensor from Aptina. 

To control the depth of field the lens is designed to be used in 
contact mode with the output optical path separated from the input 
and turned through 90 degrees so as to move the image sensor 
away from the input plane (figure 6). In order to provide 
illumination, which is essential with this use model, an LED is 
configured to provide uniform diffuse illumination internally with 
no unwanted internal reflections. 

 

 
Figure 6.  Modified Dyson Relay Lens Configuration 

Design 

The design was constructed and simulated using a software 
package from Zemax. The following approximate equations for 
numerical aperture and diffraction limit were used to define the 
requirements of the lens.  

 
N

A
A

A
2

1
=  (1) 

 AAd λ22.1=  (2) 

Using a numerical aperture (AN) of 0.105 in (1) the angular 

aperture (AA) is 5. Using (2) and a wavelength (λ) of 550nm, the 

diffraction limit (d) is 3.2µm.  

Thus the resolution of the lens was matched to the pixel size of the 
sensor. Close to diffraction-limited performance was measured by 
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simulation over the relatively large field of view along with low 
chromatic aberrations and distortion which are also characteristics 
of this type of lens design. In figure 7, the plots of modulation 
transfer function (MTF) for various points across the filed of view 
are closely distributed near the diffraction limited curve. 

Testing the prototype lens with a resolution chart showed that the 
actual resolution was marginally worse than the theoretical 
7600dpi diffraction limited simulation. In particular, light 
scattering and leakage as well as the use of a color sensor will 
contribute to this reduction. 

 

 
Figure 7.  Simulated resolution plot 

Further modeling has shown that the design is scalable to both 
higher resolution (1.8µm) and larger fields of view (50mm) 

Image Analysis 

The software accompanying the Dr. CID hardware has been 
broadened to enable a number of security workflows. These 
include image matching when connected to a database, robustness 
to image distortion, and structured crafting of the software to take 
advantage of imaging simplification engendered by the structure of 
security printing deterrents. 

A. Approach 1 

One approach we have developed [6] uses a series of metrics 
based on perimeter characteristics to compare glyphs. Here, the 
images captured by the DR CID are analyzed using the following 
steps: (1) a contrast-insensitive thresholding algorithm to binarize 
the image; (2) segmentation into connected components, or 
“regions”; (3) perimeter determination; and (4) a wide array of 
perimeter descriptor calculations. 

The thresholding algorithm is simple, and is implemented in 
such a way as to provide consistent behavior despite differences in 
contrast, exposure, etc., between different imaging devices. The 
threshold therefore consists of finding the 5% and 95% points in 
the image intensity histogram, H{IntI} and setting the threshold, 
TI, as: 

TI = H{IntI}|5% + 0.5*[H{IntI}|95% - H{IntI}|5%] (3) 

After thresholding the image, the connected components, or 
regions, are identified and the appropriate region is selected as the 
glyph of interest (based on size, shape, location, etc.). The 
perimeters are then created, as shown in Figure 8. The shape 
descriptors for the perimeter are next determined. In the original 
implementation, the centroid of the region of interest is computed, 
and the perimeter is divided into sections by angle (e.g. 0.5º 
increments from 0º to 360º around the perimeter results in 720 “pie 
pieces”). For each angular section, the minimum radius, maximum 
radius, complexity (number of changes in direction of the 
perimeter in radial direction with the glyph centroid as the origin), 
shared elements (number of perimeter points in the section), 
uncertainty (number of perimeter line segments in the section), and 
neighborhood uncertainty (moving average of the uncertainty to 
account for minor—i.e. less than 0.25º—differences in alignment 
of the two images with the angular sectioning) are computed. 

 

  
Figure 8.  Perimeter Map 

When two images are to be directly compared, the second 
image is scaled to the first image to match connected component 
size. This “normalization” corrects for any difference in focal 
length between two DR CID devices; difference in height of the 
DR CID devices over the glyph during image capture; and 
difference in size of the glyph, e.g. due to font, ink gain, etc. 
differences. Additional normalization procedures have recently 
been developed [8], and the set of metrics used to compare two 
images augmented by grayscale and edge-directionality metrics. 

The perimeter-based approach resolves differences between 
camera-to-camera variance and glyph-to-glyph (or character-to-
character) variance. Ongoing research has further improved the 
metrics used for the perimeter-based approach, improving the odds 
of a false match from less than 1 in 103 to less than 1 in 109. This 
provides a forensic level security for a single glyph [8] rather than 
batch-level forensic security (e.g. requiring four glyphs instead of 
1 using the method of [4]). 

B. Approach 2 

Using a 3D tile matrix (2D matrix with 6 colors in figure 9), 
we have shown [7] that it is possible to provide both authentication 
from the payload of the color tiles, and additionally through 
analyzing the irregularities in the perimeter a second, higher 
confidence, level of validation.  

The high resolution image capture of Dr CID revealed that the 
payload density is print-limited. This means that the payload 
density cannot be increased by reducing the tile size below 4x4 
pixels at 600dpi (5000 bytes/in2) because of limitations, such as 
bleed, in the print process. The comparison with a flat bed scanner 
showed a peak payload density of 9x9 pixels which equates to 
1440 bytes/in2. A model-based approach to finding the location 
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and extent of individual color tiles in the image was used. The last 
step in determining the payload is to use the averaged hue angle 
for each tile to determine the RGBCMY value.  

The secondary level of validation is provided by the spatial 
variation in the edge of the perimeter that can be seen in figure 9. 
A profile of the perimeter was extracted from the image and then 
divided into 40 blocks (the number of tile edges). The sum squared 
error (SSE) was computed for each of the 40 blocks and then each 
block assigned an integer value based on the deviation from 
overall mean of the SSE. These shape warp descriptors (SWD) 
then form a compact sequence that can be compared to other 
sequences by a modified form of Hamming distance called the 
shape distortion encoding difference (SDED) in order to determine 
the similarity. 

 

 
Figure 9.  3D barcode matrix - 2.04mm on a side 

Test sheets with between 117 and 165 3D barcodes with sizes from 
5x5 to 10x10 pixels (at 600ppi) were analyzed and showed that the 
smallest size had a confidence accuracy of 99.99%. For the largest 
tile sizes, the SDED becomes more uniform, in turn reducing the 
discrimination power. Even these larger sizes still had less than a 
1.3 in 106 chance of 4 or more of being a false positive. 

C. Approach 3 

The discussion so far in this paper has been centered on Dr 
CID which is based around a small area image sensor intended for 
mobile use. However, the use of an area sensor when applied to a 
strip/continuous flow of packaging or labels is not ideal as the strip 
would have to be mechanically paused for image capture at these 
resolutions. Using a high power strobe to freeze the motion is not 
practical as the strobe burst would have to be sufficient to freeze 
less than 5µm of motion as well as synchronized to the strip flow. 
At a strip speed of 1M/S the exposure would have to be less than 
5µs. The requirements for capturing high resolution data from a 
strip based process means that a line scan camera is best suited. 
However, because the strip is moving, unless the line capture rate 
of the sensor is perfectly synchronized to the speed, image 
distortion will be generated. There will be additional distortion due 
to skew of the axis of the image sensor to the flow. This potential 
skew makes the use of time delay integration (TDI) sensors 

unworkable as the skew means that the image will not pass across 
a single pixel column, thus introducing blur. 

We have developed a novel dynamic time warping approach that 
matches the perimeters of printed character even under quite 
severe distortion [8]. Figure 10 shows the test setup used where a 
high speed line scan camera with 5µm pixels (Aviiva UM8) and 
1:1 Schneider precision optics is mounted above the output of an 
HP K5400 TIJ printer. Combined with optical triggering of the 
frame grabber using black trigger bars at the edge of the page, this 
system enables the image capture of a 60mm wide strip of the 
printed output as it exits the printer. 

 

 
Figure 10.  In-line capture test bed 

Also, the approach is robust to the fact that the resolution of the 
line scan camera is slightly lower at 5µm than Dr CID at 3.2µm. 
This is due to the state of the art of different image sensors for 
different applications not being the same. 

The results show that even under severe distortion it is possible to 
match the perimeters with high precision which leads to a very low 
probability of a false positive or negative. 

Discussion 

The novel application of Dyson Relay optics has enabled the 
use of printed aberrations as a robust anti-counterfeiting 
mechanism. The prototype shows that excellent image capture 
quality is possible with a system that uses a single refractive 
surface, mirror and mainstream CMOS image sensor. In 
combination with appropriate image capture and analysis software 
we propose that simple printed marks are a suitable platform for a 
range of product, label and document protection. The approach is 
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also robust to the different imaging devices that a workflow will 
typically use and does not require complex or costly calibration. 

The combination of the print process and substrate can also 
provide specific analytic data that describes the magnitude, type 
and distribution of the errors. In addition, the use of specialist 
papers with either visible non uniform fibers or exposed fibers that 
interact with the ink can provide further levels of robustness. This 
is because the counterfeiter would have to replicate all these 
elements that are part of random microscopic processes. 

Conclusion 

We propose that forensic level authentication is achievable 
for even a single printed glyph. We define “forensic” as having 
less than 1 in 109 probability of false matching – i.e. “false 
positive” identification of a like glyph, or false rejection of same 
character imaged twice – i.e. a “false negative”. We have also 
shown that this is possible in a realistic workflow where the in-line 
production image capture devices introduce different image 
distortions compared to the in-field mobile devices. 

In addition, the same hardware that is used for forensic capture 
during production can be used for print quality analysis. 

Combined with mass serialization—the variable data printing of a 
unique identifier on each printed item—this hardware + software 
imaging system affords the possibility of a complete, low cost, 
image-based approach to supply chain, document and label 
security. 
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