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Abstract 
Inkjet printing was used to deposit alternating 100 nm layers 

of anionic and cationic polymers in order to form self-assembled 
ionic complexes on flat and fabric substrates.  The layers formed 
are characterized by elemental analysis, microscopy and 
solubility.  As initially deposited, layers are soluble but form 
insoluble complexes when they are heated and annealed.  This 
approach has been applied to polypeptides, polymer dyes, 
polymers with nanoparticulate pigments, and hydrogels. 

Introduction  
In the well-known process of ionic self-assembly, sequential 

dipping of a substrate into dilute solutions of cationic and anionic 
polymers builds up a multi-layer structure [1, 2].  This work 
describes extending this layer-by-layer system to 100 nm layers 
deposited by two-color inkjet printing.  We show that the layers 
are soluble as deposited but become insoluble on annealing after 
which the counter-ions can be washed out.  This process may be 
similar to that occurring in many biological self-assembly 
processes where cells express soluble polymers that subsequently 
assemble into insoluble structural materials such as tendon, 
cellulose and insect cuticle [3]. 

Ionic self-assembly has been studied in great detail for many 
systems [2].  Polymer-polymer assembly may occur between 
completely ionized polymeric cations and anions, such as 
polydiallyldimethylamine hydrochloride and sodium 
polystyrenesulfonate or between partly ionized polymers such as 
salts of polyethyleneimine and polyacrylic acid.  In addition 
charged nanoparticles can be used in place of some or all of the 
species [4].  It is not completely clear whether there is some 
layering in ionic complexes formed by sequential dipping but one 
would expect that it might depend on the polymer molecular 
weights and the processing conditions.  To some extent the study 
of these systems is limited by the lack of a good spectroscopic 
signature of the ionic complex.  Recent studies have determined 
diffusion coefficients for the components of these layers [5, 6]. 

  Similar polymeric complexes cannot readily be made in 
bulk but larger scale structures are also formed by dripping a 
solution of one polymer into the other to form a capsule [7].  There 
has not been much characterization of these structures but one 
would assume there is a concentration gradient through the thick 
wall of the capsule. 

In this paper we describe inkjet printing of self-assembling 
polymers, polymer-nanoparticle combinations and reactive pairs of 
polymers to form insoluble solids on flat and fabric substrates. 

Experimental methods 

Inkjet printing 
Custom-made inkjet printing systems were used with a 

conventional commercial cartridge mounted on a robotic system 
that allows many printing passes over a single line or area.  The 
cartridge was driven by a pulse generator at rates up to 1kHz over 
a table moving at up to 1cm/sec.  Either two single-color cartridges 
were exchanged at each pass or a color cartridge was cut open and 
foam-filled pieces of Tygon tube were fitted over the filters in 
each reservoir. The typical droplet size from such cartridges is 15 
pL, corresponding to a 30 micron drop diameter. 

 

Ink formulation 
Inks were formulated within the constraints of the cartridge 

and process.  Printable inks are limited to a viscosity of a few 
centipoise.  Polymer solutions need to be of low concentration, 
low molecular weight or the solvent adjusted to limit chain 
expansion.  Low surface tension may lead to dripping, which can 
be corrected by applying a negative pressure of a few psi to the 
cartridge.  Suspended particles must be small enough to not settle 
over a period of about one hour.  The commercial cartridges that 
we use are attacked by good solvents but most alcohols and 
alkanes can be used in addition to aqueous.  Some fraction of low-
boiling solvent (<100ºC) is needed to generate a bubble to fire the 
drop.   

Dye inks were a 1% solution of Poly-R478, 
(Poly(vinylaminesulfonate)backbone with an attached 
anthrapyridone chromophore) (Sigma Aldrich) and a 1% solution 
of poly(diallyldimethylammonium chloride),  (MW 100,000-
200,000) (Sigma Aldrich).  Pigment inks were suspensions of 
CAB-O-JET 300 Black, filtered to 0.5 micron particle size and  

CAB-O-JET 260M Magenta, filtered to 0.5 micron particle 
size plus 1% polystyrenesulfonate-co-maleic anhydride (MW- 
70,000) (Alfa Aesar) as dispersant. Fabric substrates were cotton 
from Test Fabrics (West Pittiston, PA), bleached mercerized 
cotton twill. 

The polypeptide inks were formulated similarly.  Poly-L-
lysine hydrobromide, poly-L-glutamic acid sodium salt  (Sigma-
Aldrich Inc., St Louis, MO) and sodium chloride were used to 
prepare two 0.25% w/v water-based ink solutions with 0.25% w/v 
sodium chloride in deionized water.   The stage surface 
temperature was maintained at 45 ± 4°C to speed up the water 
evaporation from printed lines.  Lines were printed onto glass 
microscope cover slips  

For the adhesive inks, polyethyleneglycol diglycidylether 
(PEGDGE, MW 526) and polyethyleneimine (PEI, MW 10,000) 
(Sigma-Aldrich) were used. The epoxy ink was a 48 % aqueous 
PEGDGE solution, equivalent to 3 mol epoxide per liter of 
solution.  4 % and 8 % aqueous PEI solutions were also prepared.  
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These two concentrations are equivalent to 1 and 2 mol amine 
hydrogen per liter of solution.  Adhesive layers could be formed 
by printing pure PEI on one flexible substrate and alternating 
layers of PEI with excess PEGDGE, to make an epoxy-rich gel, on 
the other. 

Spectroscopy  
Reflectance spectra from fabrics were measured on a 

Macbeth series 1500 Color Measurement System with an 
integrating sphere.  Reflectance is plotted in Kubelka –Munk units 
based on a relationship between the fractional spectral reflectance 
(R) of the sample and its absorption (k) and scattering (S) 
characteristics given by: 

. 

Results 

Self-assembled polymeric dyes and pigments on 
fabric 

In earlier work it was shown that printed layers of ceramic 
particles dispersed in an anionic polymer could be fixed against 
redispersion by printing cationic polymer into the layer [8].  The 
complex formed between the two polymers is insoluble. 

A red anionic polymeric dye (Poly R-478) was printed onto a 
woven cotton fabric and readily washed off, figure 1.  When the 
red polymer was printed alternately with cationic PDDA, the 
printed area retains its color after rinsing and a granular precipitate 
can be seen on the fibers (figure 2).   

Figure 1: Cotton twill inkjet printed with Poly-R478 (left) before and (right) 
after washing.  

 
Figure 2: Cotton twill inkjet printed with Poly-R478 and PDDA (left) before 
and (right) after washing. 

 
It would be expected that the extent of complex formation depend 
on the slow interdiffusion between the polymer layers.  Since 
extent of ionic complexation lacks a clear spectroscopic signature, 
we monitored the effect of annealing on the solubility of the 
complex by following the loss of color upon rinsing.  Figure 3 
shows the color change on rinsing as a function of the time of 
annealing after printing.  It can be seen that annealing up to 12 
hours progressively increases the resistance of the dye complex to 
rinsing.   

 

 
Figure 3:  Effect of annealing time on the resistance to washing of printed 
anionic polymer (Poly R-478) and cationic polymer (PDDA) sequentially onto 
cotton substrate. 

As a second method to demonstrate the formation of the complex, 
EDS elemental analysis was used to follow the loss of counterions 
during rinsing.  Table I presents data on the observed elemental 
composition for printing and rinsing of the anionic polymer dye 
and PDDA.  The C and O signals are affected by the underlying 
cotton but S and N are signals for the two polymers, which remain 
after rinsing, while the counterions (Na and Cl) are lost on rinsing, 
showing that an insoluble complex has formed.  As also seen from 
figure 2 there is little loss of the dye on a single washing cycle.  
Using the same approach nanoparticulate black pigment was 
printed, as a suspension alternating printing with a solution of 
cationic polymer, as a suspension with anionic polymer, and as a 
suspension with anionic polymer alternating with cationic 
polymer.  The particles alone are rapidly washed off the fabric.  
The particles in anionic polymer were more resistant to washing, 
while those with cationic polymer, with or without anionic 
polymer were highly resistant. 

Table 1: Elemental Analysis of Poly R-478 and Cationic Polymer 
(PDDA) printed as 30 alternating layers onto a cotton substrate. 

Element 
Measured Atomic % in Poly R-478-PDDA 
complexes on cotton using EDS 

 Printed 
Printed, 
washed 

Printed, 
annealed 

Printed, 
annealed, 
washed 

C 47 47 47 47 
O 52 54 53 54 
N 1.3 1.3 1.3 1.3 
S 0.13 0.14 0.13 0.14 
Na 0.6 0.01 0.3 0.01 
Cl 0.9 0.02 0.4 0.01 

 

Inkjet printed biopolymers  
As with the self-assembling printing of polymeric dyes, 

solutions of anionic and cationic polypeptides (polyglutamic acid,  
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Figure 4. Over-printing of polyglutamate and polylysine solutions.  Light 
microscope images of (a) left (partially overlapping), (b) middle (fully 
overlapping), and (c) right (partially overlapping) sections of a printed 
parallelogram after 5 cycles of printing on glass substrate. No rinsing. (Scale 
bar = 200μm)  

sodium salt and polylysine hydrobromide) were printed as 10 
alternating layers (corresponding to 5 printing cycles) onto glass 
slide, using two wells of a color cartridge.  In the central section 
the nozzles are in line and superimpose the inks while in the end 
sections the polymers are separate owing to the offset of nozzles.  
Thus the left-hand end of the image (figure 4a) shows the 
glutamate-only line going straight and the lysine-only line going 
down. The linewidth increases from 100 to 200 µm as the total 
number of printed polymer layers increases by ten times.  Single-
polymer lines readily disappeared after rinsing with deionized 
water. When the oppositely charged polymer inks PLL and PGA 
where alternately printed, the polymers formed scattered clumps in 
the middle section of the printed line and rougher ridges along the 
edges. The density and size of these clumps increased with the 
number of printed layers. As with the polymeric dyes, insoluble 
complex was formed after annealing for 24 hours at 90oC in 60-
80% relative humidity, followed by rinsing in deionized water.  
Both line edges and clumps remained,  confirming the formation 
of PLL-PGA water-insoluble complex.. 

EDS analysis was performed on the layered complex printed 
onto copper to avoid carbon or oxygen signals from the substrate. 
Both the added salt from the original buffer and counterions of the 
polyelectrolytes, namely Na+, Br-, and Cl-, were removed after 
rinsing, leaving only the polymer chains. 

 

Conclusions 
We have shown that inkjet printing of pairs of self-

assembling or reactive polymer solutions can lead to formation of 
insoluble gels by interdiffusion and reaction.  The thickness scale 
of this process is much greater than that of ionic layer-by-layer 
assembly and patterning is simple.  The kinetics of the 

interdiffusion process appear to be quite slow as would be 
expected from polymer-polymer diffusion.  This approach can be 
used to print and bind dyes and pigments, to print adhesives and to 
print biopolymer gels. 
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