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Abstract

C.1. disperse dye blue 60 was encapsulated with poly(styrene-
maleic acid) by phase separation method and followed by the
preparation of encapsulated disperse dye dispersion. Experimental
results showed that sodium hydroxide and ammonia provided the
dispersion the smaller particle size as compared with other
additives. An optimal process was attained when mass ratio of
NaOH to poly(styrene-maleic acid) was about 0.5, mass ratio of
SDBS or OP-10 to encapsulated disperse dye was about 15% and
dispersed with bead mill or ultrasonic machine. The encapsulated
C.1. disperse dye blue 60 dispersion had narrow particle size
distribution and excellent stability to centrifugal force, freeze-thaw
treatmen. The rheological behavior of the dispersion was close to
Newtonian fluid.

INTRODUCTION

Inkjet printing is one of the fastest growing textile printing
technologies, in addition to other advantages, it is more eco-
friendly, requires low water and energy consumption, and has no
or minimal residue dye water in comparison with conventional
printing technologies [1, 2].

Disperse dye has become the main colorants for polyester in
inkjet printing technology due to its high performance in hue,
brilliant and color strength [2]. However, just as similar to the
pigment, the disperse dye always exists in aggregation or
coagulation and were hard to be dispersed in aqueous media [3].
In order to prepare the disperse dye dispersion for formulation into
inkjet printing ink, considerable works have been done by some
researchers. For example, Daubach et.al modified the disperse dye
using spray drying method [4]. Kim et.al, Choi et.al and Chang
et.al prepared the core-shell disperse dye composite using
emulsion polymerization [5-7]. Lee et.al, Chrysavgi et.al and Shen
et.al obtained stable dispersion with small particle size when the
disperse dye was dispersed with aid of dispersant [8-10]. Although
there are so many methods for disperse dye modification, how to
prepare the disperse dye dispersion with high stability, small
particle size and narrow particle size distribution were still an
obstacle for wide application of disperse dyes in inkjet printing
technology.

Phase separation is effectively method to prepare the core-
shell composite. This technique has already been applied to
fabricate core-shell pigment materials [11]. It has proved that the
stability of the dispersion can be greatly improved when
amphiliphic copolymer was used as shell materials [12]. However,
according to my knowledge, this method was rarely applied for
disperse dye modification.

In order to improve the quality of disperse dye dispersion and
inkjet printing ink, in this paper, we used C.I. disperse dye blue 60
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as core and poly(styrene-maleic acid) as shell materials, and
prepared the core-shell composite by phase separation method.
Further the properties of the dispersion and inkjet printing ink
which prepared using these materials were investigated.

EXPERIMENTAL

Materials and method

C.I. disperse dye blue 60 (disperse dye, press cake, water
content 47%, its chemical structure was shown in Chart 1, Yabang
Dyestuff Co., Ltd, Changzhou, China) was dried before using.
Poly (styrene-maleic acid) (molar ratio of styrene to maleic acid
was about 0.56, Mn=9000, Nanocolorants and Digital Printing
R&D Centre of Jiangnan University, Wuxi, China). NaOH,
Acetone, Glycerol, Ethylene glycol mono-methyl ether and
Tween-80 (analytical grade, Lingfeng Chemical Reagent Co.,
Ltd., Shanghai, China) . All the distilled water was used in the
experimental.

Encapsulated disperse dye by phase separation
method

10g poly(styrene-maleic acid) was dissolved in 190g acetone,
and then 50g C.I. disperse dye blue 60 was dispersed into the
above solution. The mixture was stirred for 30min and then
transferred to Ultra Turrax IKA T18 Basic (IKA Instruments, Ltd,
Staufen, and German) and dispersed for 2h at rate of 25000r/min,
and then 250g ethanol was dropwisely added into the above
mixture. The mixture was centrifuged to get some slurry. The
slurry was washed with ethanol for three times and then dried to
obtain the powder of encapsulated disperse dye.

Preparation of encapsulated disperse dye
dispersion

10g encapsulated disperse dye, corresponding amount of
surfactant and alkali was dispersed into 89.5g distilled water. The
pH value of the dispersion was adjusted to 9 using 0.lmol/L
sodium solution. The dispersion was treated with different method,
and then the encapsulated disperse dye dispersion was obtained.

Preparation of comparative disperse dye
dispersion

9g poly(styrene-maleic acid) was dissolved in 203.5g distilled
water. After pH value of the solution was adjusted to 9.0 by adding
0.1mol/L sodium solution, and then 37.5g disperse dye was added.
The comparative disperse dye dispersion was obtained after the
mixture was treated by ultrasonic until the particle size didn’t
change any more.
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Transfer printing

The inks were prepared by prepared dispersion. The
formulation in a weight basic was given as follows: the dispersion
20%, glycerol 21%, and ethylene glycol mono-methyl ether 9%,
Tween-80 1% and distilled water 49%. The above components
were mixed and filtered through a 0.5 pm pore filtering sieve. The
ink loaded on inkjet printing machine (Mimaki JV4-180, Pizeo-
electric inkjet printer, Shinagawa Tokyo, Japan) and printed on
transfer printing paper. The polyester fabrics and printed paper
was stacked together and then heated at different temperature for
30s.

Characterization

One drop of the dispersion was diluted by distilled water, and
then placed on a 400-mesh carbon-coated copper grid and dried in
the air. The morphologies of comparative disperse dye and
encapsulated disperse dye were characterized with a transmission
electron microscope (TEM, JEM-100SX, Japan). FTIR spectra of
poly(styrene-maleic acid) (in KBr pellet), original disperse dye (in
KBr pellet) and encapsulated disperse dye (in KBr pellet) were
recorded on a Nicolet Nexus 560 FTIR spectrometer (Thermo
Electron Corporation).

The particle size and its distribution of the dispersion which
was diluted to 1000 times were measured by Nano-ZS90. The
viscosity against shear rate of the dispersion was performed with
Brookfield DV-II (Brookfield Company, Massachusetts, and
America). The maximum absorbance at 630nm of the dispersion
was measured when the dispersion was centrifuged at different
speed for 30 min. The sample was sealed and stored at -5°C for 12
h and then put into an oven at 60°C for 12 h. The freeze-thaw
stability is evaluated by comparing the particle size distribution
before and after freeze-thaw treatment. K/S value of the printed
fabrics were measured by colorimeter (Xrite-8400, America) under
illuminant D65 using the 10 standard observer.

RESULT S AND DISCUSSION

Preparation of encapsulated disperse dye

Figure 1 TEM imagines of the (a) original disperse dye and (b)
encapsulated disperse dye

Figure 1 showed that the mean particle size of encapsulated
disperse dye was about 100nm. Some particles were aggregated
during the dispersion was dried. Comparing with the morphology
of the two samples, we concluded that the disperse dye was
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encapsulated with poly(styrene-maleic acid) by phase separation
method.

These results can be further proved by the FTIR curves of
encapsulated disperse dye. Figure 2 indicated that all the vibration
bands corresponding to poly(styrene-maleic acid) (C=O stretching
vibration at 1726 ¢cm ™', the—O-H stretch at 3443cm™), C= C on
benzene ring stretching vibration at 1454 cm ~', 1495 cm ~ ' and
1601 cm ~ ') are presented in the FTIR spectrum. Interestingly, all
these absorbance peaks appeared in the FTIR spectrum of
encapsulated disperse dye and do not appear in the FTIR spectrum
of the original disperse dye, this resulted illustrated that some
disperse dye was effectively encapsulated by poly(styrene-maleic
acid).
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Figure 2 Image of infrared spectrum (a) original disperse dye; (b)
encapsulated disperse dye; (c) poly(styrene-maleic acid)

Preparation of encapsulated disperse dye
dispersion
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Figure 3 Effect of dispersing method on particle size of encapsulated

disperse dye dispersion (1) mechanical stirring (2) bead mill (3)

ultrasound.

Some process conditions, such as dispersing method,
neutralization reagents and amount of surfactant can affect the
particle size of the encapsulated disperse dye dispersion. Figure 3
showed the effect of dispersing method on the particle size of the
encapsulated disperse dye dispersion. It can be seen that the
encapsulated disperse dye also needed strong dispersing force,
such as bead milling or ultrasonic treatment. These results
indicated that the encapsulated disperse dye also aggregated in
drying process when prepared by phase separation technique.
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Figure 4 Effect of neutralization reagents on particle size of
encapsulated disperse dye dispersion (1) sodium hydroxide (2)
ammonia (3) triethanoamine.

Figure 4 showed that sodium hydroxide and ammonia can
provide the smaller particle size to the encapsulated disperse dye
dispersion than that of triethanoamine. Sodium hydroxide and
ammonia could penetrate into solvated layer and then react with —
COOH for their small molecular size, which resulted in increasing
the amount of —COO™ on encapsulated disperse dye surface.
Therefore, the aggregated particles were easily separated for the
repulsive forces, thus resulting in smaller particle size.
Triethanolamine was a Lewis base which reacted with -COOH via
isolated electrons on nitrogen atoms, its large molecular size
prevents it penetrating into the solvated layer. As a result, -COOH
groups on encapsulated disperse dye could not be neutralized
enough. Thus the particles could not be separated under shear

forces, which resulted in larger particle size.
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Figure 5 Effect of amount of NaOH on particle size of encapsulated
disperse dye dispersion

The amount of sodium hydroxide used in preparation of
encapsulated disperse dye dispersion was important as well. Figure
5 showed that the particle size of encapsulated disperse dye
dispersion decreased with an increase of amount of NaOH, and
reached the smallest when mass ratio of NaOH to poly(styrene-
maleic acid) was higher than 0.5. The reason was that few negative
charges produced when amount of sodium hydroxide was small,
thus resulted in large particle size. On the other hand, the disperse
dye hue would change when amount of NaOH was high enough.
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Figure 5 Effect of amount of low molecular dispersant on particle size of
encapsulated disperse dye dispersion, (a) OP-10 (b) SDBS

The low molecular dispersant can also help to reduce the
particle size of the encapsulated disperse dye dispersion. This
result was shown in Figure 6. It can be seen that the particle size
decreased with an increase of amount of low molecular dispersant.
The low molecular dispersant can reduce the surface energy of the
water, which resulted in high wetting speed and dispersing
efficiency, thus led to small particle size.

Performance of encapsulated disperse dye
dispersion
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Figure 6 Particle size distribution of encapsulated disperse dye dispersion

Figure 6 showed the particle size distribution of encapsulated
disperse dye dispersion. It can be seen that the smallest particle
size was about 40nm and the largest particle size was about
400nm, the mean particle size was about 154.7 nm, which was far
smaller than the diameter of the nozzle (40um). These results
indicated that the encapsulated disperse dye can be used to
formulate inkjet printing ink.

Figure 7 showed that the encapsulated disperse dye dispersion
exhibited a quite stable viscosity when the shear rate was in the
range of 10 to 60 sec”'. As mentioned above, the poly(styrene-
maleic acid) were completely encapsulated on disperse dye
surface. The stretched chain was short. Therefore, there was no
obvious fluctuation on viscosity as shear rate increased. According
to some reference, the rheological behavior of the dispersion that
was suitable for formulation inkjet printing ink needs to be as close
to Newtonian as possible.”> Figure 5 showed that only slight
changes in viscosity with increasing the shear rates of the
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encapsulated disperse dye dispersion, which indicated that it was

suitable for preparation of inkjet printing inks.
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Figure 7 Effect of shear rate on viscosity of encapsulated disperse dye
dispersion
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Figure 8 Effect of centrifugal stability on absorbance of encapsulated
disperse dye dispersion

Figure 8 indicated that the absorbance of encapsulated
disperse dye dispersion changed small when centrifugal speed was
lower than 3000r/min. The sedimentation speed of the disperse dye
particles would be offset by the Brownian motion at low
centrifugal speed, thus the absorbance changed small. However,
when centrifugal speed was higher than 3000r/min, some large
particles would be deposited for high centrifugal forces, thus led to
a large changing rate of absorbance.

Figure 9 showed the particle size distribution of encapsulated
disperse dye dispersion before and after freeze-thaw treatment. It
can be seen that the particle size distribution changed small after
freeze-thaw treatment. The reason may be due to that in
encapsulated disperse dye dispersion, the attractive force between
poly(styrene-maleic acid) and disperse dye was large for
completely encapsulation, and it was hard to be peeled off at
freeze-thaw treatment temperature. From Figure 8 and Figure 9,
we may conclude that the encapsulated disperse dispersion had an
excellent stability to storage.
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Figure 9 Particle size distribution of encapsulated disperse dye
dispersion before and after freeze-thaw treatment
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Figure 10 Effect of transfer temperature on K/S value of encapsulated
disperse dye dispersion, (a) encapsulated disperse dye dispersion (b)
comparative dispersion.

Figure 10 showed the transfer temperature on K/S value of
encapsulated disperse dye dispersion. It can be seen that the
sublimation of the disperse dye increased a little after encapsulated
by poly(styrene-maleic acid). The reason may be due to that some
energy was needed when the disperse dye penetrated from the
polymer layer.

Conclusions

The phase separation method was an effective method to
prepare the encapsulated C.I. disperse dye blue 60. The
encapsulated C.I. disperse dye blue 60 dispersion had narrow
particle size distribution and excellent stability to freeze-thaw
treatment and centrifugal forces. The sublimation of the disperse
dye increased a little after encapsulated by poly(styrene-maleic
acid).
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