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Abstract 
The development of new technology for the realisation of 

biocompatible and bioactive structures is an emerging field in the 

field of tissue engineering, regenerative medicine and biosensors. 

These techniques are generally based on the computer-aided 

design approach. Recently the use of ink-jet printers has been 

extensively studied both using bio-molecules and cells. Ink-jet 

systems were noted to cause cell damage in the microfluidic 

system and in the drop generation system (e.g. heating or piezo-

electric), and different thermal inkjet printer heads have been used 

to address these points. In this work we underline that the impact 

of the drop on the substrate is more relevant, and show how the 

properties of the deposition surface can influence cell viability. 

Firstly the printing process and the drop impact were modelled 

using fluid-dynamics and fluid-structure interaction equations. To 

validate the model, the Olivetti BioJet system was used to print 

cells onto different substrates with different elastic and viscous 

properties and cell viability was monitored in time. 

Introduction  

Rapid Prototyping (RP) techniques have been receiving a 

great deal of attention in recent years in the area of tissue 

engineering, regenerative medicine and biosensors. Of particular 

interest is the concept of cell printing. Rather than post-process 

seeding of biodegradable RP scaffolds with cells, they are printed 

directly into a matrix made with natural polymers (e.g. alginate, 

collagen, matrigel). Boland [1] and Mironov [2] pioneered this 

field realising the first printing processes using living cells as ink. 

Nowadays different techniques are used to fabricate these kinds of 

structures. These techniques can be divided in non-impact printing 

and in direct-writing. In the first group ink-jet and laser [3] based 

technologies have been used to precisely position viable (cells) and 

non-viable (biological molecules) patterns. Using these systems 

patterns with resolution of a few micrometers can be easily 

obtained. However one of the main limitations of these methods is 

that only thin structures (few micrometers) can be realised. This is 

sufficient for basic studies but not for most tissue engineering 

applications. On the other hand, with direct writing techniques it is 

possible to process more viscous materials, so that the final 

structures are somewhat thicker. Examples of direct writing 

techniques are the PAM2 system [4] and Multi-nozzle deposition 

system [5]. 

In this study we demonstrate that the main factor which 

influences cell viability in all cell-incorporated drop-based printing 

methods is the impact of a drop on the deposition surface. A finite 

element model was used to evaluate the forces acting on a droplet 

during their impact on the deposition surface. Different materials 

were investigated, and the deformation of elastic bodies was taken 

into account during impact. The model was validated using the 

Olivetti BioJet system. Fibroblasts were printed onto different 

surfaces, and their viability was monitored in time. The results 

highlight the influence of the viscoelastic properties of the 

deposition surface on cell viability after printing and shows that 

cells will not survive if drop printed on a rigid surface such as 

glass or plastic. A significant and often overlooked consequence is 

that using a soft or viscous surface implies that the resultant spatial 

resolution of printed cells is lost in time. 

Materials and Methods 
 
Deposition substrate 

The printing process was performed in a laminar flow hood 

under sterile conditions. Cells were printed directly into 

polystyrene (PS) multiwell plates. During the experiment different 

deposition substrates were used (i.e. solid, liquid, visco-elastic 

substrates) in order to determine the influence of viability on 

impact. The multiwell plates used in the experiments were 

previously prepared using with different solutions: medium with 

serum (liquid substrate), medium with 1% w/v of gelatin (viscous 

substrate), and 3 mg/ml collagen cross-linked with M199 10X 

culture medium (visco-elastic substrate), polystyrene (solid 

substrate). 

Cell culture 
Fibroblasts 3T3 (mouse embryonic fibroblast cell line, 

ATCC-LGC, UK) were cultured in DMEM medium supplemented 

with 10% v/v Fetal Bovine Serum (FBS), 5% v/v L-glutamine 200 

mM, 5% v/v pennicilline-streptomycine mixture (containing 100 U 

of pennicilline and 100 µg of streptomycine). All the experiments 

were performed using cells at the same passage. After 

trypsinisation and cell counting with a hemocytometer, a 

suspension of 5·106 cells/ml was prepared. The suspension was 

added to the print head reservoir, and the printing process started. 

Printed cells were then cultured in 1 ml of medium at 37°C in 

incubator for 48 hours. In parallel a cell control was performed 

using approximately the same amount of cells pipetted into a 

multiwell plate. 

BioJet Inkjet system 
BioJet [figure 1] is a flexible non-contact nano-dispensing 

system that enables to produce high quality, precise and dense 

arrays in any format for genomic and proteomic applications. 

Using patented thermal ink-jet technology, BioJet is able to 
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Figure 2. Forces acting on the droplet with different substrates 

Figure 1. Olivetti BioJet system 

Figure 3. Droplet shape before the impact (a). Droplet shape 

and substrate deformation after the impact with different 

surfaces: a) collagen, b) polystyrene 

 

precisely and accurately dispense picoliter to nanoliter volumes of 

liquid: just the involved material quantity is needed, so it is the 

ideal solution for micro-depositing active and expensive fluids. 

The robot X-Y-Z stage enables extremely precise positioning of 

the sample spots. The latest BioJet release hosts up to 12 different 

printheads working simultaneously to print on 18 substrates (1 x 3 

inches). The software can perform electrical and functional tests on 

each printhead separately, and can align the printheads between 

themselves with a resolution of 10µm. BioJet is interfaced by a 

user-friendly software that allows you to manage several kinds of 

printheads loaded with different liquids. Depending upon chosen 

printhead and biological fluid, optimal printing parameters can be 

set: driving energy, printing frequency, pulse length. It is possible 

to use different printheads with different drop volumes as well and 

"multipass deposition" is allowed with Olivetti BioJet system, too; 

driving software can reside on a remote PC interfaced by a LAN 

connection. In described tests a previous BioJet release was used, 

hosting up to 6 different printheads simultaneously. 

Printing process 

The first step was to fill the cartridge reservoir with 300 µL of 

cell suspension (as described in the Cell culture section), such that 

35,000 cells were printed in each well. This approximation was 

performed counting the printed cells with a hemocytometer.  

Modelling the impact 
To evaluate the forces acting on cells during the printing 

process the ejection phase was evaluated with a finite element 

model. Attention was focused on the generation of the droplet, its 

motion and finally the impact on a specific substrate. All the 

models in this work were implemented using Comsol 

Multiphysics. The drop generation and motion were simulated 

using a two-phase fluid-dynamics simulation: this model was used 

as the starting condition for evaluating substrate impact. In the 

latter model a fluid domain was inserted to represent a liquid or 

viscous deposition substrate (i.e. medium or gelatin 1% w/v), and 

used to investigate the forces acting on the drop during the impact. 

The fluid with the cell suspension was represented as a liquid 

phase (ρ= 1.2 Kg/m3; η=1 mPa·s), while the other fluid domain 

had different viscous properties according to the substrate used.  

The boundary condition was set as a wetted wall with hydrophilic 

contact angle. In the case of PS and collagen which represent rigid 

or elastic deposition substrates, a fluid-structure interaction 

module was used and the deformation and forces acting on the 

droplet during impact were evaluated. The domain properties were 

set to 5 MPa and 5kPa, respectively for PS and collagen. The 

boundary was set as a moving wetted wall, with less hydrophilic 

interaction. This evaluation is particularly important to predict cell 

viability after the printing process. 

Viability test 
Cells viability was measured using the Cell Titer-Blue-Cell 

Viability Assay (Promega, Madison, WI, USA), based on a 

resazurin-based compound metabolized by mitochondrial cytosolic 

enzymes to resorufin, which can be detected with a fluorimeter [6]  

Results 

Modelling the impact with the surface 
Assuming that the impact can control cell fate, we decided to 

investigate how the substrate properties change cell viability. 

Different substrates were used in the experiments and the same 

materials used in the experiments were modelled and analysed. 

Results show how substrate properties can change the forces acting 

on the droplet [figure 2]. 

In particular it is interesting to see how the droplet shape 

changes as a function of the substrate [figure 3]. 
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Figure 4. Cells 4 hours after the printing process on different 

substrates: a) PS; b) control; c) medium; d) gelatin; e) collagen; f) viability 

(n=6) for each substrate 

Figure 5. Cell number in time 

Cell viability as function of deposition surface 
To validate the model computed with the Comsol 

Multiphysics solver, printed cells were cultured in an incubator 

after the printing phase and their viability measured at 4, 24 and 48 

hours. The most interesting result is observed at 4 hours after the 

printing process (figure 4f): in fact viability decreases with 

increasing stiffness of the deposition surface. As shown in figure 

4a-e (cells at 4 hours after printing, 10X magnification) the 

distribution of cells is quite homogenous over all the substrates, 

apart from the PS. Droplet shape and impact forces influence the 

viability and the recovery of cultured cells. It is possible to 

correlate the influence of the substrate properties after 4 hours 

from the printing phase: the viability is linearly proportional with 

the impact force [figure 2].  

Cells printed directly into medium seem to be more viable 

with respect to all the other deposition materials, while cells 

printed on relatively soft visco-elastic materials (i.e. gelatin 1% 

w/v solution and 3 mg/ml cross-linked collagen) show a similar 

viability. Cells printed on PS surfaces are not viable: cell damage 

occurs due to the high stiffness of the deposition surface which 

causes high impact forces. After 48 hours the few living cells show 

a very low recovery in proliferation rate. On the other surfaces, 

during the first 24 hours surface adhesion processes occur and cell 

numbers begin to increase. Between 24 and 48 hours there is a 

high proliferative activity similar to controls as shown in figure 5. 

 

Conclusions 

Olivetti BioJet is suitable for the ejection of cells. Cell 

viability is not significantly influenced by the micro-fluidics 

system of the print head. On the other hand, the mechanical 

properties of the deposition surface are critical to cell survival 

because they define the force with which cells impact on the 

substrate. In all drop based cell printing methods the substrate 

must either be soft or viscous to avoid cell damage and this 

inevitably compromises spatial resolution during printing. 
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