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Abstract 
We were so far involved in the X-ray structure analysis of the 

title compounds in order to improve their solvent fastness from the 

structural point of view. Unexpectedly, we have isolated, from the 

same reaction pot, three kinds of single crystals: two Na-

containing bisazo compounds of the cis form and one Na-free 

monoazo one. In addition, a Na-free bisazo compound of the trans 

form has also been isolated by eliminating the Na atom of the 

former by means of HCl. In the present investigation, we have 

carried out the electronic characterization of the Na-free bisazo 

compound together with its light-, heat-, and solvent fastness. As a 

result, the Na-free bisazo compound is found to exhibit a vivid 

yellow and possess a high fastness against light, heat and organic 

solvents. 

1. Introduction 
As is well known, azo pigments are widely used in imaging 

and printing industries because of their versatile colors, high 

tinctorial strength as well as their low price [1]. However, the azo 

pigments are generally inferior in light-, heat-, and solvent fastness 

to phthalocyanines (blue), peryleneimides (vivid red via maroon to 

black), quinacridones (red and magenta), pyrrolopyrroles (red), 

although considerable effort has been directed to improve these 

properties. Under these circumstances, some novel azo pigments 

with high light- and heat-stability (but poor solvent fastness) have 

recently been reported by Nagata et al. which include 2,6-bis[5-

amino-3-tert-butyl-4-(3-methyl-1,2,4-thiadizol-5-yldiazeneyl)-1H-

pyrazol-1-yl]-1,3,5-triazin-4(1H)-one (B-PAT: Fig. 1) [2]. In our 

previous investigation [3], we have carried out structure analysis of 

B-PAT in order to improve the solvent fastness from a structural 

point of view. Unexpectedly, we have isolated three kinds of single 

crystals from the reaction product of B-PAT, indicating that the 

product was not a pure material, but a mixture of mono and bisazo 

compounds. To our even greater surprise, the bisazo compounds 

are found to form five-coordinate Na-complexes in a cis fashion 

(Na-containing B-PAT [4, 5]: about 80 % of the product; Fig. 2 

(a)); whereas the monoazo compound is Na-free (M-PAT [6]: 

about 20 % : Fig. 2 (b)). We wondered why the Na atom is 

included in B-PAT and why the Na-complex crystallizes in a cis 

fashion, because the cis form is generally less stable than the trans 

one. Then, we found that NaNO2 used for the preparation of diazo 

components is responsible for the Na inclusion and that the Na 

atom bridges by force two monoazo moieties in a cis fashion. In 

addition, the inclusion of the Na-atom in B-PAT greatly stabilizes 

B-PAT as compared with B-PAT of the cis or trans form 

according to our molecular orbital calculations. This prompted us 

to eliminate the Na atom from Na-containing B-PAT in an attempt 

to obtain another B-PAT of the trans form (Fig. 1(b)) that might 

exhibit high solvent fastness. In fact, we could isolate Na-free B-

PAT of the trans form by addition of hydrochloric acid [3]. Then, 

Na-free B-PAT of the trans form is found to possess high solvent 

fastness in addition to the light- and heat-stability of the original 

title compound. 

The present paper reports on the electronic structure as well 

as on the light-, heat- and solvent fastness of the Na-free B-PAT of 

the trans form, using the originally synthesized product (i.e. 

mixture of Na-containing B-PAT and M-PAT) as the reference. 

  
Fig. 1 Structure of B-PAT: (a) cis form and (b) trans form. The solid lines 

designate the direction of the transition dipole. 

  
Fig. 2 Structure of three isolated crystals: (a) Na-containing B-PATs (B-PAT I 

with A = methanol and B = phenol: B-PAT II with A = water and B = NMP) and 

(b) Na-free M-PAT. The solid line denotes the direction of the transition dipole 

according to the molecular orbital calculations [3]. 

2. Experimental 

2.1. Preparation of B-PAT and Na-free B-PAT 
The mixture of mono and bisazo compounds (i.e. intended B-

PAT: Fig. 1) was synthesized as described in a previous report [2]. 

The ratio of the mono to bisazo compounds is estimated to be 

about 1 to 4 on the basis of the elementary analysis. 

Na-free B-PAT was immediately precipitated from a B-PAT-

saturated solution in NMP upon dissolution of HCl with 30 times 

molar equivalent. The product was isolated by filtration and 

washed with water. Elementary analysis gave the formula of 

C23H29N17OS2 ・ H2O which is in good agreement with the 

theoretical value of B-PAT being  non-water (Mw: C23H29N17OS2 = 

623.72). In addition, mass spectrum gave the parent peak of 624 

for B-PAT together with some small fractions, as shown in Fig. 3.  
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Fig. 3 Mass spectrum of Na-free B-PAT of the trans form.  

2.2. Spectroscopic calculations on Na-free B-PAT 
of the trans form  
Semi-empirical molecular orbital (MO) calculations were 

carried out on Na-free B-PAT of the trans form, using 

MOPAC2009. Geometry was optimized with the AM1 

Hamiltonian, and the spectroscopic calculations were made on the 

optimized geometry using ZINDO method. 

2.3. Summary of the structure of Na-containing B-
PAT, Na-free B-PAT, and M-PAT  
Table 1 summarizes the crystallographic parameters for Na-

containing B-PATs I and II of the cis form [4, 5], Na-free B-PAT 

of the trans form, and Na-free M-PAT [6]. Na-containing B-PAT I 

of the cis form is the five-coordinate Na-complex with A = 

methanol and B = phenol, while B-PAT II designates the similar 

complex with A = water and B = NMP, as shown in Fig. 2 (a). 

Only Na-free B-PAT of the trans form is free from solvents, and 

all the rest is solvated crystals.  

Fig. 4 shows the ORTEP plot of Na-free B-PAT of the trans 

form. The trans form is more stable than the cis one in the absence 

of the Na atom according to the MO calculations [3]. There are 

five NH...N intramolecular hydrogen bonds formed between the 

NH of the amino group of the pyrazol ring and the N atom of the 

azo bond. 

Fig. 5 illustrates the in-plane dimer structure formed by two 

NH…O intermolecular hydrogen bonds. The formation of dimers 

doubles the molecular unit to significantly stabilize the solid state. 

The molecules are stacked with little molecular overlap, as shown 

in Fig. 6. 

The powder X-ray simulation based on the present structure 

analysis is in good agreement with the experimental result of Na-

free B-PAT of the trans form, indicating that the phase of single 

crystals is identified as the same as that of the powders.  

Table 1 Crystallographic parameters. 

 

 
Fig. 4 ORTEP plot for Na-free B-PAT of the trans form. 

 
Fig. 5 Dimeric structure of Na-free B-PAT of the trans form. [symmetry code(i): 

(1-x, 2-y, 1-z)] 

 
Fig. 6 Molecular stack of Na-free B-PAT of the trans form. 

2.4. Measurements of solution and solid-state 
spectra 
UV-visible absorption spectra in solution and in evaporated 

films were recorded on a UV-2400PC spectrophotometer 

(Shimazu). Diffuse-reflectance spectra for powders were measured 

on the same spectrophotometer in combination with an integrating 

sphere attachment (ISR-240 from Shimazu). Reflection spectra on 

single crystal were measured by means of a UMSP80 microscope-

spectrophotometer (Carl Zeiss). An Ultrafluar (×10) objective was 

used together with a Nicol-type polarizer. Reflectivities were 

corrected relative to the reflection standard of silicon carbide. 

2.5. Light-, heat-, and solvent fastness of Na-free B-
PAT of trans form 
Light stability was tested by exposing powdered Na-free B-

PAT of trans form to UV light directly under a 250W ultrahigh 

pressure mercury lamp (USHIO) for 10 h. Diffuse-reflectance 

spectra were measured every one hour in order to study the 

deterioration of the substance. Thermogravimetric analysis (TGA) 

was carried out in air for powdered Na-free B-PAT, using Thermo 
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Plus TG-8120 from Rigaku. Solubility was measured in DMA 

(dimethylacetoamide) and NMP (N-methyl-2-pyrrolidone). 

3. Results and discussion 

3.1. Electronic structure 

3.1.1. Spectroscopic calculations 

MO calculations revealed that there are two optical absorption 

bands in the visible region around 415 and 403 nm. The former 

transition with an oscillator strength of 1.08 is composed of three 

main components: HOMO (highest occupied molecular orbital) to 

LUMO (lowest unoccupied molecular orbital)+1, HOMO to 

LUMO+2, and HOMO-1 to LUMO. This gives the direction of 

transition dipole I as shown in Fig. 1(b). On the other hand, the 

latter transition with an oscillator strength of 0.34 comprises the 

transitions of HOMO-1 to LUMO and HOMO to LUMO+1.  This 

transition corresponds to the direction of transition dipole II.    

3.1.2. Solution spectra 
Fig. 7 shows the solution spectrum of Na-free B-PAT of tarns 

form in NMP. The spectrum exhibits a broad band between 380 

and 500 nm, which is indicative of a series of vibronic transitions. 

These are assigned to the 0-0 (pure electronic transition) at the 

longest wavelength, then the 0-1 and 0-2 transition as shown, 

assuming that the main transition is due to transition dipole I and 

that a vibrational transition of about 1800 cm-1 is coupled with the 

pure electronic transition. The absorption maximum at about 450 

nm is assigned to the 0-1 transition as characterized by a high 

extinction coefficient of about 40000. 

No significant difference is observed between the spectra of 

Na-free B-PAT of the trans form and the mixture of Na-containing 

B-PAT of the cis form and M-PAT.  
 

 
Fig. 7 Solution spectrum of Na-free B-PAT of the trans form in NMP. 

3.1.3. Solid-state spectra 
Fig. 8 shows the diffuse reflectance spectra for powders of 

Na-free B-PAT of the trans form, together with the absorption 

spectrum of evaporated films. The spectrum of evaporated films 

appreciably resembles that in solution (Fig. 7). On the other hand, 

the diffuse reflectance spectrum is broader than that of the 

evaporated film. In addition, the absorption maximum appears at 

about 420 nm and is located slightly at shorter wavelengths than 

that of the evaporated film, indicating the absorption maximum is 

now attributed to the 0-2 transition. The evaporated film of Na-free 

B-PAT exhibits typical yellow, while the powdered Na-free B-

PAT is slightly reddish. 

 

 
Fig. 8 Diffuse-reflectance and absorption spectra of powdered and evaporated 

Na-free B-PAT of the trans form, respectively 

Fig. 9 shows the non-polarized reflection spectra of Na-free 

B-PAT of the trans form measured on single crystals by means of a 

microscope spectrophotometer. The reflection spectrum looks 

similar to that of the diffusion reflectance spectrum (Fig. 8), 

peaking at 420 nm. Since there are two optical transitions in the 

visible region (see section 3.1.1) and the situation is rather 

complicated, we are not yet in the position to precisely characterize 

the reflection bands by polarization experiments on single crystals.  
 

 
Fig. 9 Non-polarized reflection spectra measured on single crystals of Na-free 

B-PAT of the trans form. 

The situation is slightly different in single crystals of Na-

containing B-PAT II of the cis form (Table 1) where there is only 

one optical transition whose transition dipole is shown in Fig. 2.  

Fig. 10 shows the polarized reflection spectra of Na-containing B-

PAT II of the cis form. An intense reflection band appears around 

500 nm for polarization perpendicular to the a axis (i.e. the 

direction of the transition dipole). Polarization parallel to the a 

axis quenches entirely the reflection, indicating that the transition 

dipole points along the long molecular axis (i.e. perpendicular to 

the a axis.). The longest-wavelength band is assigned to the 0-0 

transition. 
 

 
Fig. 10 Polarized reflection spectra measured on the (a, b) plane of Na-

containing B-PAT II single crystals. 
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3.2. Light-, heat-, and solvent fastness 

3.2.1. Light stability 
Fig. 11 shows the diffuse-reflectance spectra of powdered Na-

free B-PAT of the trans form before and after UV exposure. No 

noticeable deterioration is observed after exposure for 10 h, 

showing a high stability of Na-free B-PAT of trans form. 
 

 
Fig. 11 Diffuse-reflectance spectra of Na-free B-PAT before and after  UV 

exposure. 

3.2.2. Heat stability 
Fig. 12 shows the TGA curve as a function of temperature for 

powdered Na-free B-PAT of trans form. At first, the weight-loss of 

about 3 % is observed in the temperature range between 50 and 

250 °C. This is due to the desorption of one water molecule 

adsorbed on the surface of Na-free B-PAT of trans form, as 

pointed out also in elementary analysis (see section 2.1). The 

weight-loss begins to occur abruptly around 340 °C, indicating that 

Na-free B-PAT of the trans form is thermally quite stable. In 

addition, the abrupt weight-loss is a typical sign for one 

component system, as is also shown by the mass spectrum (Fig. 3). 

Furthermore, it is important to note that Na-free B-PAT of the 

trans form can be sublimated under high vacuum, showing an 

extremely high thermal stability. This is an usual characteristic that 

is not found in ordinary bisazo compounds. 
 

 
Fig. 12 Thermogravimetric analysis of Na-free B-PAT of the trans form.  

3.2.3. Solvent fastness 
As stated in introduction, the mixture of Na-containing B-

PAT of the cis form and M-PAT is highly resistant to light 

irradiation and heat, but is rather poor in solvent fastness.  On the 

contrary, Na-free B-PAT of the trans form is found to possess 

much higher solvent fastness in addition to the light and heat 

stability. 

The solubility of Na-free B-PAT in DMA and NMP is 1 g/l 

and 5 g/l, respectively. This is nearly equivalent to that of Pigment 

Red 255 (i.e. diketopyrrolopyrrole derivative). On the other hand, 

Na-containing B-PAT exhibits a solubility of about 25 g/l in NMP. 

4. Conclusions 
Electronic characterization together with light-, heat-, solvent 

fastness has been carried out on Na-free B-PAT of the trans form, 

using the mixture of originally synthesized B-PAT (i.e.  mixture of 

Na-containing B-PAT of cis form and M-PAT). The conclusions 

can be summarized as follows. 

1. There are two optical transitions in the visible region 

according to the MO calculations: one is the transition of 450 nm 

with an oscillator strength of 1.08 composed of the transitions of 

HOMO to LUMO+1, HOMO to LUMO+2, and HOMO-1 to 

LUMO, and the other is the transition of 403 nm with an oscillator 

strength of 0.34 consisting of the transitions of HOMO-1 to 

LUMO and HOMO to LUMO+1. 

2. The solution spectrum of Na-free B-PAT of trans form in 

NMP exhibits a vivid yellow as characterized by a broad band 

between 380 and 500 nm. The absorption maximum is assigned to 

the 0-1 vibronic transition, assuming that the main component as 

described above prevails. No significant difference is recognized 

between the spectra in solution and solid state as far as the spectral 

region is concerned. However, the solid state spectra are slightly 

broader than that in solution, and the absorption maximum is 

located slightly at shorter wavelengths. 

3. Na-free B-PAT of the trans form is resistant to light-, heat-, 

and solvent. Elimination of the Na atom from Na-containing B-

PAT of the cis form is the key to the single component system of 

the trans form which yields a yellow pigment that possesses good 

pigmentary characteristics. 
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