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Abstract 
Electro photography – the second wide spread digital printing 

technology beside ink jet – is on the way to prove its capabilities as 

a manufacturing technology, at least for applications in biofabri-

cation. On DF2008 we first introduced a novel and highly efficient 

manufacturing process for biochips (peptide arrays) based on 

electro photography. After the major scientific goals were achieved 

the step towards a series production has been made in the last two 

years. We now present the biochip printing facility capable for a 

series production.  

Next, we introduce the application of electro photography as 

a rapid prototyping technique for the (potential) production of 

artificial tissues. Similar to other rapid prototyping techniques 3D-

structures are build layer by layer from toner powders. Since 

different approaches to manufacture scaffolds for tissue engineer-

ing have been made until today the comparison of the results is 

interesting.  

Introduction 
In manufacturing digital printing is generally used for the 

maskless application of highly resolved coatings. The substances to 

be deposited are stabilized in a jetable ink or alternatively, in the 

case of electro photography, they are embedded into a printable 

toner powder. Due to their different properties both digital printing 

techniques complement each other not only in the graphics market 

but as well for manufacturing purposes. An application in biofabri-

cation enabled by electro photography is the efficient manufactur-

ing of complex biochips – peptide arrays. This novel manufactur-

ing process was first introduced on DF2008 [1,2]. After having 

established the major scientific results, i.e. proven the biological 

functionality of printed peptide arrays, the laboratory processes 

were transferred step by step into a series production. We now 

present the recent state of peptide printing capable for a commer-

cial production. 

But electro photography has even more potential in biofabri-

cation. 3D-printing or rapid prototyping of scaffolds which are 

applicable for tissue engineering is a quite new and exiting field of 

research. Several rapid prototyping techniques as e.g. drop-on-

demand printing of a binder into a powder bed, jetting of a hy-

drogel reactant into a hydrogel precursor, stereo-lithography, fused 

deposition modeling, and various dispensing strategies have been 

employed for the manufacturing of biocompatible and biodegrad-

able scaffolds [3–5]. Our approach introduced here is to apply 

electro photography with customized bio-toners to build up 3D- 

scaffolds for tissue engineering.  

Especially for (but not limited to) applications in biofabrica-

tion electro photography has interesting advantages compared to 

inkjet or other rapid prototyping techniques. First of all it is a very 

stable and reliable process; no clogging of nozzles occurs and no 

intermediate purging processes are needed. The resolution of elec-

tro photography is comparable to inkjet; but while the inkjet proc-

ess tends to become more and more difficult (unstable) with de-

creasing drop size the stability of the electro photographic process 

is not affected by the resolution. The printing resolution mainly 

depends on the quality of the toner, i.e. the distribution of the 

particle’s size (which should be narrow) and the tribo-electrical 

charge of the toner (which has to stay within a narrow window).  

An important property of electro photography needed for bio-

chip production is that highly reactive biochemical agents (Fmoc 

amino acid-OPfp esters, the amino acids) can be encapsulated and 

deactivated in the toner powders. Uncontrolled chemical reactions 

are suppressed and no interchange reactions are possible as it 

easily happens by the intermingling of drops. Chemical reactions 

are started in a controlled manner by melting the toner powders; at 

this step the toner matrix turns into a solvent. Additionally, highly 

sensitive agents are surprisingly stable when encapsulated into 

toner particles. The decay rate of the most sensitive amino acid 

toner (Fmoc Arg-OPfp ester) is about 5% per months (stored at 

25°C) while the same amino acid ester decays in a conventional 

solution (e.g. ink) within minutes. 

Inkjet printing of aqueous or organic binder material into a 

powder bed or selectively sintering particles with a laser beam are 

well known rapid prototyping (or solid free form fabrication) 

techniques. But the spatial resolution of the obtained objects is 

moderate (in the range of ~250µm). More important, any 3D-

object (e.g. a scaffold) can be build from only a single building 

material (powder), at least only a single one for each layer. Beside 

the superior resolution of electro photography compared to con-

ventional rapid prototyping techniques it is an intrinsic feature that 
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each layer may be patterned from different toners. This provides 

the opportunity to introduce a more complicated structure into a 

scaffold.  

We first present the series production of peptide arrays before 

we turn to the prospects of electro photography as a rapid prototyp-

ing technique for biocompatible scaffolds.   

Biochips 
Biochips promise to advance biotechnology and medicine by pro-

viding the opportunity of massive parallel screening for (chemical) 

binding partners. They are used for the development of new medi-

cal agents, vaccines, and methods for fast diagnosis of diseases. In 

these screenings libraries of proteins or peptides (short protein 

fragments) are probed with molecules of interest as for example 

important proteins in pathogens, cancer cells or viruses in order to 

identify binders of diagnostic or therapeutic capability.  

 

 

Fig. 1: Characteristic chemical binding of a molecule to a biochip 

 

Proteins consist of 20 amino acids which are linked to long 

chains. A typical protein has a length of about 500 amino acids. 

However, protein fragments, so called peptides, with a length of 12 

to 20 amino acids are sufficient for identifying characteristic bind-

ing reactions. These screenings can be regarded as search for a 

biological key fitting to a lock. But the problem is the enormous 

number of peptides needed.  

About 100.000 peptides are necessary in order to represent 

each of the approximately 1000 proteins in a bacterium (in the 

form of 100 overlapping peptides each) and even 500.000 for a 

malaria pathogen. Till today peptide arrays are produced by a 

spotting technique. A maximum of 10.000 peptides fit onto a glass 

slide where the main drawback is their price: An individual peptide 

spot costs around 6€, adding up to almost 60.000€ for a full array – 

too much for most promising applications. 

 

 

Fig. 2: BBC Research: Global Biochip markets [6] 

 

The market of biochips is predicted to grow fast where the 

emphasis lies on fundamental research, drug discovery, and mo-

lecular diagnosis [6]. But the spreading of this technology is im-

peded by the high production costs of biochips. Meanwhile litho-

graphic methods allow for the combinatorial synthesis of highly 

dense DNA- chips, but peptide arrays which can not be produced 

by this elegant method lag behind. Now printing peptide arrays by 

electro photography has shown the way out. 

 

 

Fig. 3: Layer by layer synthesis of a peptide array on a glass slide  

 

Printed Peptide Arrays 
Peptides are synthesized layer by layer from amino acids on a 

glass slide where the laser printer is used as a highly efficient 

micro dispensing tool. The process works as follows [1,2]: Pro-

tected amino acids are embedded into toners (instead of colors) 

which have similar physical properties as commercial color toners. 

Since peptides and proteins consist of 20 amino acids, an according 

number of amino acid toners and printing units are needed. In the 

first run spots of up to 20 toners are printed in an array pattern onto 

a coated glass slide where the single spots do not overlap, fig. 3. 

Then the slide is removed from the printer and heated up to about 

90°C. The toner particles melt, turning the toner matrix into a 

solvent. At this step the embedded amino acids couple to the coat-

ing of the carrier. Subsequently the toner matrix and the charge 

control agents are washed away. Now a single layer of the amino 

acids is bound on the glass slide. The complete synthesis cycle is 

depicted in fig. 4.  

 

 

Fig. 4: The synthesis cycle includes printing of the amino acid 

toners (a), coupling of the amino acids by melting (b), washing 

(c), and deprotecting the coupled amino acids (d). 
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During printing, the amino acids are processed in a dry state 

preventing any undesired chemical reactions. The coupling reac-

tions are started in a controlled manner by heating the carrier out-

side the printer. After completion of the first synthesis cycle the 

probe carrier is put into the printer again and a second layer of 

amino acid toners is printed exactly on top of the first, figure 3. 

After the second synthesis cycle amino acid chains of length two 

are generated on the glass slide. When repeating this printing and 

synthesis cycle 12–20 times several hundred thousand peptides of 

the corresponding length are synthesized in parallel on a glass slide 

of size 20 by 20cm. 

Printing Technology for a Series Production 
Compared to the state of art printed peptides arrays are more 

complex, i.e. they contain much more peptides. The first prototype 

peptide printer (which is still under operation) is able to print over 

155.000 micro spots on a glass slide (20 by 20cm). The next gen-

eration printer designated for a series production is now able to 

print more than 500.000 spots on a glass slide of the same size. 

This allows offering peptide arrays at a price which is at least 30-

times less compared to the state of art (~0.13 – 0.20€ for a single 

peptide spot, PEPperPRINT).  

Beside an increase of resolution the reliability of the printing 

process and the chemical synthesis steps, a convenient operation of 

the printer, and the quality assurance of the arrays are major issues 

for a commercial production. To reach these requirements a major 

reengineering of the peptide printer and the chemical processing 

steps has been done.  

 

 

Fig. 5: Peptide printer for series production of peptide arrays. 

Designed and build in cooperation with KMS Automation GmbH.  

 

The series production of peptide arrays is a batch process 

since the printing steps are fast compared to the chemical process-

ing cycles in between: A single layer of amino acid toners is 

printed on each of ten glass slides; then the slides are simultane-

ously processed in a chemical reactor, fig 7. The processing time 

allows to print the second batch of ten glass slides.  

The printing process works as follows (fig. 6): The glass slide 

(220 x 210 x 1mm) is fixed on a vacuum table which is mounted 

onto a linear drive. Laser markers on the glass slide are used by a 

vision system to calculate its precise position on the holder in order 

to ensure that all layers will be printed exactly above each other. 

Each slide is identified by a lasered bar code; so a data manage-

ment system can propose the next right data set to the operator. 

The printing process is single-pass; the probe carrier moves below 

the printing units which are arranged in a line. 20 – 24 printing 

units (OKI C7000 series with 1200dpi LED-arrays) are contained 

in the printer. At least 20 are needed for the 20 different amino 

acid toners, the additional ones are used for the testing of new 

toners. The printing units which are involved in the printing proc-

ess (not all of them are needed for each print) are lowered onto the 

glass slide. The photo conductor drums are pressed onto the slide 

with an adjustable force such that a conformal contact of the OPC-

drums to the surface of the glass is obtained which is required for a 

uniform toner transfer. As discussed in [1], the transfer of toner 

onto glass is more difficult than onto paper and requires a more 

sophisticated transfer process. After the print is finished the print-

ing units are lifted back to their idle position. Finally the glass slide 

is removed from the printer and heated in an oven to start the 

coupling reactions before the chemical processing steps follow.  

 

 

Fig. 6: Printing unit and probe carrier holder. 

 

 

Fig. 7: Chemical reactor for processing of peptide arrays.  

 

This new production technique is expected to advance re-

search in life sciences by enabling many important research pro-

jects which are not possible on today due to the lack of complex 

and affordable peptide arrays. 

3D- Printing of Functional Surfaces 
The application of many rapid prototyping techniques for the 

manufacturing of biocompatible and biodegradable scaffolds for 
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tissue engineering has been studied since about 1996 [3-5]. Em-

ployed methods are drop-on-demand printing of aqueous or or-

ganic binder into a powder bed, jetting of a hydrogel reactant into a 

hydrogel precursor or vice versa, stereo-lithography, fused deposi-

tion modelling, selectively sintering of particles with a laser beam, 

and various dispensing strategies. Manufacturing of biocompatible 

scaffolds is a challenge since many biological and technical re-

quirements must be met. First of all scaffolds must allow seeding 

of living cells, which requires biocompatible materials and a po-

rous structure where the cells can grow in. The physical properties 

of biological materials are not always compatible to rapid prototyp-

ing processes. 

A major obstacle of artificial tissues is the complexity of bio-

logical tissues, which have a complicated microstructure (with 

sizes down to 10µm) and may contain many different types of 

cells. A major disadvantage of many rapid prototyping techniques 

is that 3D-objects can only be build from a single material. In 

principle different layers of a layered 3D- structure could be made 

from different materials (e.g. powders), but this is of little help. A 

complex structure as depicted in figure 8 can not be build anyhow. 

3D-printing of UV-curing inks or wax, on the other side, is not 

able to generate a porous structure which is important to guide the 

growing of cells. Another disadvantage of many conventional rapid 

prototyping techniques is their limited resolution which is in the 

range of about 250µm.  

 

 

Fig.8: Branched tube with bulk and surface made from different 

materials (bulk, surface, and support material) 

 

Beside the superior resolution of electro photography it is an 

intrinsic feature of this technology that each layer of a layered 3D-

object may be arbitrarily patterned from different toners. These are 

the principle ideas which guide the application of electro photogra-

phy as a rapid prototyping technique in biofabrication. In order to 

obtain a highly resolved 3D-object toner layers can not simply be 

printed one above the other and fixed by melting in between. The 

3D-structure distorts by the frequent melting processes and its top 

surface fast corrugates. This prevents the uniform deposition of 

additional layers of toner. An alternative approach followed here is 

to chemically couple the consecutive added layers of toner. A 

moderate sintering of the toner after each printing step then suf-

fices to provide the contact area between the particles needed for 

chemically coupling. A porous structure is obtained by the elabo-

rate use of support material which can be chemically degraded 

after the printing process. Still a major problem is the highly uni-

form deposition of layers with different toners what is necessary to 

maintain a smooth surface. At the moment this process to generate 

biocompatible scaffolds from different materials is under develop-

ment.  
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