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Abstract 
Rapid Prototyping (RP) techniques are commonly employed 

for the fabrication of structure at different scale. In this work we 

describe a CAD/CAM based system able to process different 

materials in simple or complex three-dimensional shapes. The 

innovation of this system is the modular approach: starting from 

the design of the final architecture, moving to the fabrication 

process and concluding with the resultant properties of the 

material used to fabricate a structure, it is possible to control and 

modulate different parameters. In the emerging approach of tissue 

engineering and regenerative medicine, two crucial aspects for the 

fabrication of a scaffold are the architecture [1] and the 

mechanical properties [2]. Starting from these assumptions, in this 

work we focus our attention on the feasibility to reproduce a 

biological micro-environment. Using PAM2 Graphical User 

Interface (GUI) complex shaped geometries were designed to 

fabricate the desired structures. In this work we describe the 

control architecture of the system and show how computational 

models of the extrusion phase of different materials can be used to 

establish working parameters for the fabrication of complex 

micro-structures. 

Introduction  

Rapid Prototyping (RP) techniques offer the potential to design 

and fabricate highly reproducible 3D well-shaped structures. RP is 

a subset of mechanical processing techniques which allows the 

realisation of highly complex and reproducible structures. The 3D 

structures are fabricated one layer at a time via computer-aided 

design (CAD) models and computer-controlled tooling processes 

(CAM). RP methodologies use specific polymers and materials 

designed specifically to meet the processing requirements of each 

RP system. The first technique developed with this concept was   

Fused Deposition Modelling (FDM) developed by Hutmacher et 

al. [3]. Other techniques have been developed in this direction 

using a pressurised syringe to produce scaffolds with complex 

geometries and a wider range of processing capabilities [4, 5]. The 

PAM system [6] was one of the first systems developed in this 

direction. However, the transfer of RP technologies to encompass 

biocompatible and bioresorbable materials still poses a significant 

challenge, particularly in developing 3D scaffolds for tissue 

engineering applications. Merging all these requirements we 

developed and patented [7] a modular micro-fabrication system 

purposely designed to handle and dispense a multitude of materials 

with different processing technologies. Using the modular 

approach different techniques and materials can be processed and 

controlled at the same time. PAM2 is an evolving and adaptable 

system and can fabricate milli- or centi-meter scaled 3D scaffolds. 

A Graphical User Interface (GUI) is used to design simple or 

complex shaped 3D structures. To control the final dimensions a 

Finite-Element Model (FEM) was used to describe the extrusion 

phase. These models were used to optimise the fabrication 

parameters, obtaining high fidelity complex micro-structures with 

controlled shapes. 

PAM
2
 micro-fabrication system  

PAM2 system is RP technique composed of micro-positioning 

three-dimensional stages (XYZ) and several processing modulus as 

shown in figure 1. The micro-positioning system has a spatial 

resolution of 1 µm, and can be controlled both in velocity and in 

acceleration (up to 15 mm/s). A purposely designed control 

software was developed to monitor all the processing parameters in 

real-time.  

 

PAM
2
 software 

The software is composed of several viewlets to control each 

parameter of the fabrication technique (e.g. pressure, force, 

temperature) and the motion of the mechanical stages. A GUI 

module was developed to design the architecture of the fabricated 

structure. The innovation of the PAM2 GUI viewlet is the 

feasibility of designing simple or complex patterns [figure 2a], as 

well as its ability to recognize specific trajectories from an 

anatomic tissue image [figure 2b]. 
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Figure 2. Examples of design structure architectures with PAM
2
 

software: a) using the Graphical User Interface viewlet to reproduce 

a hepatic-like path; b) trajectories obtained from the reconstruction 

of a bone micro-CT 

Figure 3. Interaction between a drop and a moving plane of 

deposition (velocity of 4.5 mm/s). Figure highlights the boundary of 

the drop of a viscous solution (viscosity and surface tension values of 

alginate 6% w/w) through a needle (diameter of 165 µm), exerted 

pressure 400 mmHg. 

PAM
2
 modular fabrication techniques 

Different techniques can be used to fabricate micro-structures. 

In the PAM2 system compressed air can be used as pneumatic 

force to extrude viscous solutions. A controlled electro valve (ITV 

2030, SMC Corporation) can exert pressure in a range of 35-500 

cBar (resolution of 1 cBar) and extrude low viscosity synthetic 

polymers solution (1-10 cP) [6], or natural polymers viscous 

solution [8]. To process highly viscous or solid-like solutions a 

piston module was inserted. A stepper motor is used to actuate a 

sterile and commercial syringe, allowing the extrusion of highly 

viscous (e.g. alginate solution, wax) or gelled materials (e.g. 

gelatin, collagen). This device is also used to realise bio-active 

scaffolds with cell suspensions [9]. Another module controls the 

temperature of the reservoir and of the deposition plane. 

Specifically the reservoirs can be heated in a temperature range of 

25-70°C, while the deposition surface can be refrigerated or heated 

(∆T= ±40°C respect to room temperature). 

Finite-Element modelling of the extrusion 
phase 

It is known that material extrusion is a critical fabrication 

phase for RP techniques. Particularly in the field of micro-

fabrication it is important to predict the line width (LW) of the 

deposited material in order to fabricate high fidelity well-shaped 

and spatially controlled structures. In this work we modelled the 

fabrication process taking into account three important parameters 

involved: the generation of a drop on the needle, the material 

outflow and the interaction between the material and the moving 

deposition plane. Comsol Multiphysics software was used to 

simulate the extrusion phases. Navier-Stokes equations [equation 

1] were combined with phase-field equations [equation 2] to track 

material boundaries.  

 

 (1) 

 

 
         (2)

 
 

 

 

Once the initial conditions were imposed and the material 

started to exit from the needle, different velocities of the deposition 

plate were investigated to predict the optimal condition to control 

the LW [figure 3]. For thermal-dependent materials heat transfer 

equations were included in the model [equation 3]. The processing 

of different materials was evaluated with this approach, and the 

final LW was eventually predicted.  
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Conclusions 

In this work we describe the engineering of different aspects 

of a modular RP system for fabrication of micro-structures. A 

modular micro-fabrication system was developed and designed at 

the University of Pisa. A software control interface allows the user 

to design simple or complex 3D patterns, which are used to 

represent the final architecture of a structure. Then the micro-

positioning system is controlled with all the fabrication techniques 

in real-time. Different materials can be processed to realise well-

defined and spatially controlled 3D micro-structures. In order to 

improve the quality of the structures a FEM approach was used to 

evaluate the relationship between the working parameters during 

the extrusion phase. This approach is particularly useful to predict 

and control the fidelity and LW of fabricated micro-structures. 
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